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Lecture 1: systems of linear equations
Given a system of linear equations, one of the following is true:
• it has a unique solution,
• it has infinitely many solutions
• it has no solution at all.

An 𝑚 × 𝑛 matrix is an array with 𝑚 rows and 𝑛 columns where each entry is a real or complex num-
ber. Such a matrix is denoted by:

𝐴 =

⎣
⎢
⎢
⎡

𝑎11
𝑎21
⋮

𝑎𝑚1

𝑎12
𝑎22
⋮

𝑎𝑚2

…
…

…

𝑎1𝑛
𝑎2𝑛
⋮

𝑎𝑚𝑛⎦
⎥
⎥
⎤

The notation for accessing elements is (row, column), so if we have [1
3

−1
𝜋

2
𝑒], then the entry at (2, 3)

is 𝑒.

Every system of linear equations can be represented by a matrix called the augmented matrix, which of
formed by appending the coefficient matrix of the system to the column vector of constantans. These
are defined via an example in the next table.

Ways of representing a system of linear equations

System of linear equations
𝑥 + 𝑦 − 𝑧 = 3
2𝑥 + 5𝑧 = 1

𝑥 + 3𝑦 − 2𝑧 = 0

Coefficient matrix

[𝑥 𝑦 𝑧]

⎣
⎢⎡

1
2
1

1
0
3

−1
5
2 ⎦

⎥⎤

Augmented matrix

[coefficient matrix | constants]

⎣
⎢
⎡1

2
1

1
0
3

−1
5
2

3
1
0⎦
⎥
⎤

Constant vector 𝑏 =
⎣
⎢⎡

3
1
0⎦
⎥⎤

Variable vector ̄𝑥 = [
𝑥
𝑦
𝑧
]

Matrix multuplication notation 𝐴 ⋅ ̄𝑥 = 𝑏
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Row-echelon form (REF) of a matrix
• The leading entry in each nonzero row is to the right of all the leading entries in the rows above it
• All all-zero rows are at the bottom

⎩{
⎨
{⎧𝑥 + 𝑦 − 𝑧 = 3

−2𝑦 + 7𝑧 = −5
11𝑧 = −7

⇝
⎣
⎢
⎡1

0
0

1
−2
0

−1
7
11

3
−5
−7⎦

⎥
⎤

Reduced row-echelon form (RREF) of a matrix
In addition to the criteria for row-echelon form:
• every pivot should be 1
• above & below each pivot must be zeros

Rank of a matrix
The rank of a matrix is the number of pivots in either row-echelon form or reduced row-echelon form
(it’s the same either way)

Examples of row-echelon/reduced row-echelon form and rank

Examples of above things

matrix row-echelon form? reduced row-echelon form? rank

[
2
0
0

4
−1
0

−1
2
0

] ✓ × 2

[
1
0
0

0
1
0

1
5
4
] ✓ × 3

[
1
0
0

1
0
0

2
2
0

1
3
0
] ✓ × 2

[
1
0
0

1
0
0

2
2

−1

1
3
0
] × × n/a

[
2
0
0

1
0
1

−1
3
1

] × × n/a

[
1
0
0

0
1
0

0
0
1
] ✓ ✓ 3

[
1
0
0

0
0
0

0
1
0

0
1
0
] ✓ ✓ 2

Gaussian elimination
Augmented matrix → elementary row operations → row echelon form, then do backward substitution

[𝐴 𝑏] → ⋯ → row-echelon form + backward sub
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Gauss-Jordan elimination
Augmented matris → elementary operations → reduced row-echelon form, then backward substitu-
tion

[𝐴 𝑏] → ⋯ → reduced row-echelon form + backward sub

Elementary row operations notation

operation meaning

𝑅𝑖 ↔ 𝑅𝑗 interchange row 𝑖 and row 𝑗

𝑅𝑖 ← 𝑘𝑅𝑖 Multiply row 𝑖 by a nonzero constant

𝑅𝑖 ← 𝑅𝑖 + 𝑘𝑅𝑗
Add 𝑘 times row 𝑗 to row 𝑖
(store the result in row 𝑖)

Checking for a unique solution
When rank = number of variables, the system has a unique solution.

Example of Gaussian elimination
Solve the following system using Gaussian elimination:

⎩{
⎨
{⎧𝑥 + 𝑦 − 𝑧 = 3

2𝑥 + 5𝑧 = 1
𝑥 + 3𝑦 − 2𝑧 = 0

Solution:

⎣
⎢
⎡ 1

2
−1

1
0
3

−1
5

−2

3
1
0⎦
⎥
⎤ ⟶⟶⟶⟶⟶⟶⟶⟶⟶⟶⟶⟶⟶⟶⟶⟶⟶

𝑅2←𝑅2+−2𝑅1
𝑅3←𝑅3+𝑅1

⎣
⎢
⎡1

0
0

1
−2
4

−1
7

−3

3
−5
3 ⎦

⎥
⎤ ⟶⟶⟶⟶⟶⟶⟶⟶⟶⟶⟶⟶⟶⟶⟶

𝑅3←𝑅3+2𝑅2

⎣
⎢
⎡1

0
0

1
−2
0

−1
7
11

3
−5
−7⎦

⎥
⎤

The right most matrix is in row-echelon form!
The matrix’s rank is 3, and the number of variables is also 3, so the system has a unique solution.
To do backward substitution, go from the bottom up:

11𝑧 = −7 ⇝ 𝑧 = −
7
11

(and just continue plugging in from there as you solve variables).
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Lecture 3: Gaussian elimination and solutions of systems of linear
equations
Unique solution
Example: Solve the system

⎩{
⎨
{⎧2𝑥2 + 3𝑥3 = 8

2𝑥1 + 3𝑥2 + 𝑥3 = 5
𝑥1 − 𝑥2 − 2𝑥3 = −5

using Gaussian elimination.

Solution:

⎣
⎢
⎡0

2
1

2
3

−1

3
1

−2

8
5

−5⎦
⎥
⎤ ⟶⟶⟶⟶⟶⟶⟶⟶⟶

𝑅3↔𝑅1

⎣
⎢
⎡1

2
0

−1
3
2

−2
1
3

−5
5
8 ⎦

⎥
⎤ ⟶⟶⟶⟶⟶⟶⟶⟶⟶⟶⟶⟶⟶⟶⟶⟶⟶

𝑅2←𝑅2+−2𝑅1

⎣
⎢
⎡1

0
0

−1
5
2

−2
5
3

−5
15
8 ⎦

⎥
⎤

⟶⟶⟶⟶⟶⟶⟶⟶⟶⟶
𝑅2←1

5𝑅2

⎣
⎢
⎡1

0
0

−1
1
2

−2
1
3

−5
3
8 ⎦

⎥
⎤ ⟶⟶⟶⟶⟶⟶⟶⟶⟶⟶⟶⟶⟶⟶⟶

𝑅3←𝑅3−2𝑅2

⎣
⎢
⎡1

0
0

−1
1
0

−2
1
1

−5
3
2 ⎦

⎥
⎤

Now we’re in row-echelon form! The corresponding equations now are

⎩{
⎨
{⎧𝑥1 − 𝑥2 − 2𝑥3 = −5

𝑥2 + 𝑥3 = 3
𝑥3 = 2

Then (from plugging in from the bottom-up in those equations) the system has a unique solution:

⎣
⎢
⎡

𝑥1
𝑥2
𝑥3⎦

⎥
⎤ =

⎣
⎢⎡

0
1
2⎦
⎥⎤

Note: remember from last lecture that the system has a unique solution iff (if and only if) the number
of variables equals the number of pivots in row-echelon form, which is the same thing as the rank of
the matrix.

unique solutions ⇔ # of variables = pivots in REF = rank([𝐴 𝑏])

No solution
Example: Solve the system

⎩{
⎨
{⎧𝑥1 − 𝑥2 + 2𝑥3 = 3

𝑥1 + 2𝑥2 − 𝑥3 = −3
2𝑥2 − 2𝑥3 = 1

using Gaussian elimination.

Solution:

⎣
⎢
⎡1

1
0

−1
2
2

2
−1
−2

3
−3
1 ⎦

⎥
⎤ ⟶⟶⟶⟶⟶⟶⟶⟶⟶⟶⟶⟶⟶⟶

𝑅2←𝑅2−𝑅1

⎣
⎢
⎡1

0
0

−1
3
2

2
−3
−2

3
−6
1 ⎦

⎥
⎤ ⟶⟶⟶⟶⟶⟶⟶⟶⟶⟶

𝑅2←1
3𝑅2

⎣
⎢
⎡1

0
0

−1
1
2

2
−2
−2

3
−2
1 ⎦

⎥
⎤ ⟶⟶⟶⟶⟶⟶⟶⟶⟶⟶⟶⟶⟶⟶⟶

𝑅3←𝑅3−2𝑅2

⎣
⎢
⎡1

0
0

−1
1
0

2
−1
0

3
−2
5 ⎦

⎥
⎤
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But the last line in the matrix gives you 0 = 5! That means the system is inconsistent, so it doesn’t
have a solution.

In general, if you have [𝐴 𝑏] → [0 ⋯ 𝑏] in row-echelon form (so 0 = 𝑏 with 𝑏 ≠ 0), the system is in-
consistent and doesn’t have a solution.

Infinitely many solutions (parametric form)
Example: Solve the system

⎩{
⎨
{⎧𝑤 − 𝑥 − 𝑦 + 2𝑧 = 1

2𝑤 − 2𝑥 − 𝑦 + 3𝑧 = 3
−𝑤 + 𝑥 − 𝑦 = −3

Solution:

⎣
⎢⎡

1
2

−1

−1
−2
1

−1
−1
−1

2
3
0

1
3

−3⎦
⎥⎤ ⟶⟶⟶⟶⟶⟶⟶⟶⟶⟶⟶⟶⟶⟶⟶

𝑅2←𝑅2−2𝑅1
𝑅3←𝑅3+𝑅1

⎣
⎢⎡

1
0
0

−1
0
0

−1
1

−2

2
−1
2

1
1

−2⎦
⎥⎤ ⟶⟶⟶⟶⟶⟶⟶⟶⟶⟶⟶⟶⟶⟶⟶

𝑅3←𝑅3+2𝑅2

⎣
⎢⎡

1
0
0

−1
0
0

−1
1
0

2
−1
0

1
1
0⎦
⎥⎤

The last row (all zeroes) isn’t telling you it’s inconsistent — it’s just saying that there’s redundant in-
formation. So then switching this back into equations, we have

{
𝑤 − 𝑥 − 𝑦 + 2𝑧 = 1
𝑦 − 𝑧 = 1

Note: Now only 𝑤 and 𝑦 have corresponding pivots. These are called leading variables. The remaining
variables (𝑥 and 𝑧) are called free variables. These free variables will create parameters — and that
means that the system will have infinitely many solutions. (Thus, the system must be written in para-
metric form.)

So! Putting it in parametric form:
1. Assign parameters to free variables: 𝑥 = 𝑡, 𝑧 = 𝑠 where 𝑡, 𝑠 ∈ ℝ
2. Express the leading variables in terms of the free variables:

{
𝑤 = 𝑥 + 𝑦 − 2𝑧 + 1
𝑦 = 𝑧 + 1 ⇝ {𝑤 = 𝑥 + 𝑧 + 1 − 2𝑧 + 1 = 𝑥 − 𝑧 + 2

𝑦 = 𝑧 + 1
3. And then finally express the solution in parametric form:

⎣
⎢
⎡

𝑤
𝑥
𝑦
𝑧⎦
⎥
⎤ =

⎣
⎢
⎢
⎡𝑡 − 𝑠 + 2

𝑡
𝑠 + 1

5 ⎦
⎥
⎥
⎤

=

⎣
⎢
⎢
⎡1

1
0
0⎦
⎥
⎥
⎤

𝑡 +

⎣
⎢
⎢
⎡−1

0
1
1 ⎦

⎥
⎥
⎤

𝑠 +

⎣
⎢
⎢
⎡2

0
1
0⎦
⎥
⎥
⎤

This is the parametric form of a system which has infinitely many solutions!
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Summary: Theorem (Rank and Solutions of Systems of Linear Equations)
Given a system of linear equations, say 𝐴𝑥 = 𝑏. We have the following: –The system is consistent and:
• it has a unique solution iff rank([𝐴|𝑏]) = # variables
• if has infinitely many solutions iff rank([𝐴|𝑏]) < # variables. In this case, the number of free vari-

ables is given by # free variables = # of variables − rank([𝐴|𝑏])
• The system is inconsistent in which case the REF or RREF of [𝐴|𝑏] has a row of the form [0 ⋯ 0 𝑏]

with 𝑏 ≠ 0

Linear combinations
A system may have solutions written in parametric form, like

[
𝑥
𝑦
𝑧
] =

⎣
⎢⎡

1
−1
0 ⎦

⎥⎤𝑡 +
⎣
⎢⎡

0
1
2⎦
⎥⎤𝑠

If you’d like to generate a solution, you need to give 𝑡 and 𝑠 values and combine them — this is what
we call a linear combination, and we say that

[
𝑥
𝑦
𝑧
] ∈ span

⎝
⎜⎛

⎣
⎢⎡

1
−1
0 ⎦

⎥⎤,
⎣
⎢⎡

0
1
2⎦
⎥⎤

⎠
⎟⎞
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Lecture 4: spanning sets
Consider the homogeneous system

⎩{
⎨
{⎧𝑥1 − 𝑥2 + 2𝑥3 − 𝑥4 = 0

2𝑥1 + 2𝑥2 + 𝑥4 = 0
3𝑥1 + 𝑥2 + 2𝑥3 = 0

Note: “homogenous” means all the equations are equal to zero

The third equation here is totally irrelevant, actually: it’s just the first equation plus the second equa-
tion, so it’s not independent. This system will have infinitely many solutions.

⎣
⎢
⎡1

2
3

−1
2
1

2
0
2

−1
1
0

0
0
0⎦
⎥
⎤ → ⋯ →

⎣
⎢
⎡1

0
0

−1
4
0

2
−4
0

−1
3
0

0
0
0⎦
⎥
⎤

𝑥1 and 𝑥2 are leading variables, because they have pivots (underlined above) in their columns, while 
𝑥3 and 𝑥4 are free variables (i.e. parameters).

If we set 𝑥3 = 𝑡, 𝑥4 = 𝑠, the collection of solutions is:

⎣
⎢
⎢
⎡

𝑥1
𝑥2
𝑥3
𝑥4⎦

⎥
⎥
⎤

=

⎣
⎢
⎢
⎡−1

1
1
0 ⎦

⎥
⎥
⎤

𝑡 +

⎣
⎢
⎢
⎢
⎡

1
4

−3
4

0
1 ⎦

⎥
⎥
⎥
⎤

𝑠

This is a linear combination because 𝑡 and 𝑠 are in linear form.
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The solution of the homogenous system is the set

span

⎝
⎜⎜
⎜⎜
⎜⎜
⎜⎛

⎣
⎢
⎢
⎡−1

1
1
0 ⎦

⎥
⎥
⎤

,

⎣
⎢
⎢
⎢
⎡

1
4

−3
4

0
1 ⎦

⎥
⎥
⎥
⎤

⎠
⎟⎟
⎟⎟
⎟⎟
⎟⎞

= the collection of all linear combinations of 𝑣1, 𝑣2 = {𝑣1𝑡 + 𝑣2𝑠 : 𝑡, 𝑠 ∈ ℝ}

Geometrically, we have 4 variables, so we’re in four-dimensional space (ℝ4). 𝑣1 and 𝑣2 can be thought
of as vectors, and when you add them together, you get a plane. This plane (in ℝ4 still) contains all the
solutions to the system.

The important point is that any vector on this plane is a linear combination of 𝑣1 and 𝑣2. Moreover,
any vector on the plane is a solution to the homogenous system.

Examples: Given a vector 𝑣 ∈ ℝ𝑛, determine if 𝑣 ∈ span(𝑣1, …, 𝑣𝑘).

Example: Is 𝑣 =
⎣
⎢
⎡

0
−2
1
4 ⎦

⎥
⎤ ∈ span

⎝
⎜⎜
⎜⎜
⎛

⎣
⎢
⎡

−1
1
1
0 ⎦

⎥
⎤,

⎣
⎢
⎢
⎡

1
4

−3
4

0
1 ⎦

⎥
⎥
⎤

⎠
⎟⎟
⎟⎟
⎞

?

Solution: We would like to find 𝑡, 𝑠 ∈ ℝ such that 
⎣
⎢
⎡

0
−2
1
4 ⎦

⎥
⎤ =

⎣
⎢
⎡

−1
1
1
0 ⎦

⎥
⎤𝑡 +

⎣
⎢
⎢
⎡

1
4

−3
4

0
1 ⎦

⎥
⎥
⎤

𝑠.

To solve, let’s combine the two vectors on the right, so:

⎣
⎢
⎢
⎡ 0

−2
1
4 ⎦

⎥
⎥
⎤

=

⎣
⎢
⎢
⎢
⎡−𝑡 + 1

4𝑠

𝑡 − 3
4𝑠

𝑡
𝑠 ⎦

⎥
⎥
⎥
⎤

Then it’s obvious that 𝑡 = 1 and 𝑠 = 4. You can check the validity of this solution with the first two
entries. So the answer to the original question is yes, because you can find a solution.

Example: Is 
⎣
⎢
⎡

1
2
4
0⎦
⎥
⎤ in span

⎝
⎜⎜
⎛

⎣
⎢
⎡

1
3
0
1⎦
⎥
⎤,

⎣
⎢
⎡

3
1
2
0⎦
⎥
⎤,

⎣
⎢
⎡

1
1
1
1⎦
⎥
⎤

⎠
⎟⎟
⎞?

We would like to find (if they exist) 𝑥, 𝑦, 𝑧 ∈ ℝ such that:

⎣
⎢
⎢
⎡1

2
4
0⎦
⎥
⎥
⎤

=

⎣
⎢
⎢
⎡1

3
0
1⎦
⎥
⎥
⎤

𝑥 +

⎣
⎢
⎢
⎡3

1
2
0⎦
⎥
⎥
⎤

𝑦 +

⎣
⎢
⎢
⎡1

1
1
1⎦
⎥
⎥
⎤

𝑧

So then we combine them into one vector again:

⎣
⎢
⎢
⎡1

2
4
0⎦
⎥
⎥
⎤

=

⎣
⎢
⎢
⎢
⎡𝑥 + 3𝑦 + 𝑧

3𝑥 + 𝑦 + 𝑧
2𝑦 + 𝑧
𝑥 + 𝑧 ⎦

⎥
⎥
⎥
⎤

⇔

⎩{
{⎨
{{
⎧𝑥 + 3𝑦 + 𝑧 = 1

3𝑥 + 𝑦 + 𝑧 = 2
2𝑦 + 𝑧 = 4
𝑥 + 𝑧 = 0
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Now we have to solve a system of linear equations, so let’s use matrices:

⎣
⎢
⎢
⎡1

3
0
1

3
1
2
0

1
1
1
1

1
2
0
0⎦
⎥
⎥
⎤

→ ⋯ →

⎣
⎢
⎢
⎡1

0
0
0

−2
1
0
0

−1
1

−1
0

−1
3

−2
−13⎦

⎥
⎥
⎤

The bottom row here says that 0 = −13, which is inconsistent and obviously can’t be true, so the
system has no solutions. (∴ the answer to the original question is no)

Also: it’s a lot quicker if you just go straight from the vectors in the question to a matrix, which will
be useful on an exam.

Note: if there are infinitely many solutions, the vector is in the span, and furthermore there are infi-
nitely many linear combinations that satisfy that.

Section 3.1: matix operations
Here’s a thing:

two matrices are equal ⇔
1) they have the same size

 2) corresponding entries are equal

For example, if

𝐴 = [𝑥
2

𝑦 − 1
3

], 𝐵 = [1
𝑎

2
𝑏], 𝐶 = [1

𝑎
2
𝑏

3
1
]

then it’s possible to have 𝐴 and 𝐵 equal if 

⎩{
⎨
{⎧

𝑥=1
𝑦−1=2
𝑎=2
𝑏=3

. But it’s not possible to have 𝐴 or 𝐵 equal to 𝐶

because they have different sizes.

Addition and subtraction of matrices (entry-wise)
These operations are only defined iff the matrices have the same size.

For example, if 𝐴 = [ 1
−2

4
6

0
5] and 𝐵 = [−3

3
1
0

−1
2 ] then 𝐴 + 𝐵 = [−2

1
5
6

−1
7 ].

Scalar multiplication
Example: if 𝐴 = [ 1

−2
4
6

0
5] and 𝑘 = 2, then 𝑘𝐴 = 2𝐴 = [ 2

−4
8
12

0
10].

Matrix multiplication
For matrices 𝐴 and 𝐵, the product 𝐴𝐵 is defined iff the number of columns of 𝐴 = the number of rows
of 𝐵 — so if 𝐴 is size 𝑚 × 𝑛, 𝐵 must be size 𝑛 × 𝑝. The size of the output will then be 𝑚 × 𝑝.

Example: if

𝐴 =
⎣
⎢⎡

1
0
1

−1
2
0 ⎦

⎥⎤, 𝐵 = [ 1
−1

−1
1 ] ⇝ 𝐴𝐵 =

⎣
⎢⎡

1
0
1

−1
2
0 ⎦

⎥⎤[ 1
−1

−1
1 ]

This is fine because 𝐴 is 3 × 2 and 𝐵 is 2 × 2. The output will be 3 × 2.
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Lecture 5: matrix multiplication, inverses, and linear transforma-
tions
Matrix multiplication (cont.)
Matrix multiplication: 𝐴⏟

𝑚×𝑛
𝐵⏟

𝑛×𝑝
= 𝐴 ⋅ 𝐵

Example: you go row (in the left matrix) times column (in the right matrix), like this

[1
0

0
2

5
−1] ⋅

⎣
⎢⎡

−1
1
2

0
1
1⎦
⎥⎤ = [

(1)(−1) + (0)(1) + 5(2)
(0)(−1) + (2)(1) + (−1)(2)

(1)(0) + (0)(1) + (5)(1)
(0)(0) + (2)(1) + (−1)(1)

] = [9
0

5
1]

Example: the same thing as above but reversing the order

⎣
⎢⎡

−1
1
2

0
1
1⎦
⎥⎤ ⋅ [1

0
0
2

5
−1] =

⎣
⎢⎡

−1
1
2

0
2
2

−5
4
9 ⎦

⎥⎤

You can be super fast at this by taking the row from the left matrix and lining it up as a column and
distributing it along the right matrix!

Remarks: For 𝑎, 𝑏 ∈ ℝ, then 𝑎𝑏 = 𝑏𝑎 and 𝑎𝑏 = 0 ⇒ 𝑎 = 0 or 𝑏 = 0. However, for matrices, these two
properties may be false: 𝐴𝐵 ≠ 𝐵𝐴 and 𝐴𝐵 = 0 ⇏ 𝐴 = 0 or 𝐵 = 0.

For example: [1
0

0
0] ⋅ [0

1
0
0] = [0

0
0
0]

Theorem: distributivity law
1. 𝐴(𝐵 + 𝐶) = 𝐴 ⋅ 𝐵 + 𝐴 ⋅ 𝐶
2. (𝐵 + 𝐶)𝐴 = 𝐵 ⋅ 𝐴 + 𝐶 ⋅ 𝐴

Special matrices

Special matrices

Zero matrix
⎣
⎢⎡

0
⋮
0

⋯

⋯

0
⋮
0⎦
⎥⎤

Identity matrix
𝐼𝑛 =

⎣
⎢⎡

1
 
 

 
⋱
 

 
 
1⎦
⎥⎤

(blank spaces are 0)

Diagonal matrix
dig(𝑎1, 𝑎2, …, 𝑎𝑛)

⎣
⎢
⎢
⎡

𝑎1
 
 
 

 
𝑎2
 
 

 
 
⋱
 

 
 
 

𝑎𝑛⎦
⎥
⎥
⎤

Scalar matrix 𝑘𝐼𝑛 =
⎣
⎢⎡

𝑘
 
 

 
⋱
 

 
 
𝑘⎦
⎥⎤

Properties with special matrices
𝐴 + 0 = 𝐴
(0 is the zero matrix)

𝐴𝐼𝑛 = 𝐴 and 𝐼𝑛𝐴 = 𝐴
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Invertibility
We noted that 𝐴𝐵 ≠ 𝐵𝐴 in general, but there are cases where 𝐴𝐵 = 𝐵𝐴. For example,

[2
1

5
3] ⋅ [ 3

−1
−5
2 ] = [1

0
0
1]

[ 3
−1

−5
2 ] ⋅ [2

1
5
3] = [1

0
0
1]

This property is similar to 2 ⋅ 1
2 = 1

2 ⋅ 2 = 1. 1 is the identity for the real numbers, and 2 ⋅ 1
2  can be

written as 21 ⋅ 2−1.

So, the definiton of this property: a matrix 𝐴 of size 𝑚 × 𝑛 is invertible if there exists 𝐵 such that 
𝐴𝐵 = 𝐵𝐴 = 𝐼𝑛. (Hence, [2

1
5
3] is invertible.)

Recall that for any 𝑎 ∈ ℝ, 𝑎 ≠ 0, there exists 𝑏 ∈ ℝ such that 𝑎𝑏 = 1. However, it is possible for a
matrix 𝐴 to satisfy the following:
• 𝐴 ≠ 0
• 𝐴𝐵 ≠ 𝐼𝑛

∴ not all matrices are invertible.

For example, let’s try to see if this one is invertible:

[1
0

0
0] ⋅ [𝑎

𝑐
𝑏
𝑑
] =? [1

0
0
1]

This is impossible because the bottom-right entry in the identity matrix will never be able to be
nonzero. So [1

0
0
0] is not invertible.

But how do you know what matrices are invertible?

Theorem about invertibility for a 2x2 matrix

𝐴 = [𝑎
𝑐

𝑏
𝑑
] is invertible ⇔ det(𝐴) = 𝑎𝑑 − 𝑏𝑐 ≠ 0

and if 𝐴 is invertible then

𝐴−1 =
1

𝑎𝑑 − 𝑏𝑐
[ 𝑑
−𝑐

−𝑏
𝑎 ]

(det(𝐴) is the determinant of 𝐴)

For example, let’s determine whether these matrices are invertible:

𝐴 = [1
3

2
0] ⇝ det(𝐴) = 1 ⋅ 0 − 3 ⋅ 2 ≠ 0 ∴ 𝐴−1 =

1
−6

[ 0
−3

−2
1 ]

𝐴 = [ 1
−2

1
2

−1
] ⇝ det(𝐴) = (1)(−1) + (

1
2
)(−2) = 0 ∴ ∄𝐴−1

Theorem about invertibility for any 𝒎 × 𝒏 matrix (which we’ll come back to later)
For 𝐴 of size 𝑚 × 𝑛, 𝐴 is invertible ⇔ det(𝐴) ≠ 0

Gauss-Jordan method for inverses
Input: 𝐴 of size 𝑚 × 𝑛
Steps:
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• With [𝐴 𝐼𝑛] → ⋯ → [𝐵 𝐴~] where 𝐵 is the reduced row-echelon form of 𝐴,
‣ if 𝐵 = 𝐼𝑛 and 𝐴~ = 𝐴−1, then 𝐴 is invertible
‣ if 𝐵 ≠ 𝐼𝑛, then 𝐴 is not invertible

Example: find the inverse of 𝐴 = [
1
0

−1

0
1
0

1
2
1
], if it exists.

Solution:

⎣
⎢
⎡ 1

0
−1

0
1
0

1
2
1

1
0
0

0
1
0

0
0
1⎦
⎥
⎤ ⟶⟶⟶⟶⟶⟶⟶⟶⟶⟶⟶⟶⟶⟶

𝑅3←𝑅3+𝑅1

⎣
⎢
⎡1

0
0

0
1
0

1
2
2

1
0
1

0
1
0

0
0
1⎦
⎥
⎤ ⟶⟶⟶⟶⟶⟶⟶⟶⟶⟶⟶⟶⟶⟶

𝑅2←𝑅2−𝑅3

⎣
⎢
⎡1

0
0

0
1
0

1
0
2

1
−1
1

0
1
0

0
−1
1 ⎦

⎥
⎤

⟶⟶⟶⟶⟶⟶⟶⟶⟶⟶
𝑅3←1

2𝑅3

⎣
⎢⎢
⎡1

0
0

0
1
0

1
0
1

1
−1
1
2

0
1
0

0
−1
1
2 ⎦

⎥⎥
⎤

⟶⟶⟶⟶⟶⟶⟶⟶⟶⟶⟶⟶⟶⟶
𝑅1←𝑅1−𝑅3

⎣
⎢
⎢
⎡1

0
0

0
1
0

0
0
1

1
2

−1
1
2

0
1
0

−1
2

−1
1
2 ⎦

⎥
⎥
⎤

Now we have the matrix [𝐼3 𝐴−1], so 𝐴 is invertible and 𝐴−1 =
⎣
⎢
⎡

1
2

−1
1
2

0

1
0

−1
2

−1
1
2 ⎦

⎥
⎤ = 1

2[
1

−2
1

0
2
0

−1
−2
1

].

Solving 𝐴𝑥 = 𝐵: Firstly, how do we solve the equation 3𝑥 = 6?

1. 3𝑥 = 6
2. Find 3−1: 13
3. 1

33𝑥 = 1
36

4. 1𝑥 = 2
5. 𝑥 = 2

Now for 𝐴𝑥 = 𝐵 where 𝐴 and 𝐵 are matrices:

1. write things down again
2. Find 𝐴−1 (if it exists)
3. 𝐴−1(𝐴𝑥) = 𝐴−1𝑏 (be careful of order because matrices are nor communative)
4. 𝐼𝑛𝑥 = 𝐴−1𝑏
5. 𝑥 = 𝐴−1𝑏
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Example: solve {
𝑥+𝑧=2
𝑦=2𝑧=−1
−𝑥+𝑧=3

Using the coefficent matrix, we can represent this as 𝐴 ⋅ ̄𝑥 = 𝑏:

⎣
⎢
⎡ 1

0
−1

0
1
0

1
2
1⎦
⎥
⎤ ⋅ [

𝑥
𝑦
𝑧
] =

⎣
⎢⎡

2
−1
3 ⎦

⎥⎤

Find the inverse of 𝐴:

𝐴−1 =
1
2
⎣
⎢⎡

1
−2
1

0
2
0

−1
−2
1 ⎦

⎥⎤

Then solve:

[
𝑥
𝑦
𝑧
] = 𝐴−1 ⋅

⎣
⎢⎡

2
−1
3 ⎦

⎥⎤ =
1
2
⎣
⎢⎡

1
−2
1

0
2
0

−1
−2
1 ⎦

⎥⎤

⎣
⎢⎡

2
−1
3 ⎦

⎥⎤ =
1
2
⎣
⎢⎡

−1
−12
5 ⎦

⎥⎤

Hence, 𝑥 = −1
2 , 𝑦 = −6, 𝑧 = 5

2 .

Linear transformations
Definiton:
A linear transformation is a function 𝑇 : ℝ𝑛 → ℝ𝑚 such that
1. 𝑇 (𝑢 + 𝑣) = 𝑇(𝑢) + 𝑇(𝑣)
2. 𝑇 (𝑘𝑢) = 𝑘𝑇 (𝑢)

For example, a linear transformation might transform a plane into a line, but will never transform a
plane into, say, a parabola (since that would require exponents etc).

Examples
(Examples may run onto the next page)
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Example 1: 𝑇 : ℝ3 → ℝ2 given by 𝑇([
𝑥
𝑦
𝑧
]) = [ |𝑥|

𝑦+𝑧
]. Is 𝑇  a linear transformation?

Nope! |𝑥| is not a linear function. We can justify this because it doesn’t satisfy either of the above
conditions (though you only really have to show that one of them doesn’t work):

For the fist condition, 𝑇 (𝑢 + 𝑣) ≠ 𝑇(𝑢) + 𝑇(𝑣) because with 𝑢 = [
1

−1
−1

], 𝑣 = [
−1
1
1

] ∈ ℝ3:

𝑇 (𝑢 + 𝑣) = 𝑇
⎝
⎜⎛

⎣
⎢⎡

1
−1
−1⎦

⎥⎤ +
⎣
⎢⎡

−1
1
1 ⎦

⎥⎤

⎠
⎟⎞ = 𝑇

⎝
⎜⎛

⎣
⎢
⎡0

0
0⎦
⎥
⎤

⎠
⎟⎞ = [0

0]

𝑇 (𝑢) = 𝑇
⎝
⎜⎛

⎣
⎢⎡

1
−1
1 ⎦

⎥⎤

⎠
⎟⎞ = [

|1|
−1 + (−1)

] = [ 1
−2]

𝑇 (𝑣) = 𝑇
⎝
⎜⎛

⎣
⎢⎡

−1
1
1 ⎦

⎥⎤

⎠
⎟⎞ = [ |−1|

1 + 1
] = [1

2]

[ 1
−2] + [1

2] = [2
0]

𝑇 (𝑢) + 𝑇(𝑣) = [2
0] ≠ [0

0] = 𝑇(𝑢 + 𝑣)

For the second condition, 𝑇 (𝑘𝑢) ≠ 𝑘𝑇 (𝑢) with 𝑢 = [
−1
0
0

], 𝑘 = −2 because:

𝑇 (𝑘𝑢) = 𝑇
⎝
⎜⎛2

⎣
⎢⎡

−1
0
0 ⎦

⎥⎤

⎠
⎟⎞ = 𝑇

⎝
⎜⎛

⎣
⎢⎡

−2
0
0 ⎦

⎥⎤

⎠
⎟⎞ = [2

0]

𝑘𝑇 (𝑢) = −2𝑇
⎝
⎜⎛

⎣
⎢⎡

−1
0
0 ⎦

⎥⎤

⎠
⎟⎞ = −2[1

0] = [−2
0 ]

𝑇 (𝑘𝑢) = [2
0] ≠ [−2

0 ] = 𝑘𝑇 (𝑢)
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Example 2: 𝑆 : ℝ3 → ℝ2 is given by 𝑆([
𝑥
𝑦
𝑧
]) = [

𝑥−𝑦
𝑦+2𝑧]. Is 𝑆 a linear transformation?

Yes — both properties are linear transformations. To prove this…

…for the first condition, 𝑇 (𝑢 + 𝑣) = 𝑇(𝑢) + 𝑇(𝑣), let 𝑢 = [
𝑥
𝑦
𝑧
], 𝑣 = [

𝑎
𝑏
𝑐
] ∈ ℝ3. Then

𝑆(𝑢 + 𝑣) = 𝑆
⎝
⎜⎜⎛

⎣
⎢
⎡

𝑥 + 𝑎
𝑦 + 𝑏
𝑧 + 𝑐⎦

⎥
⎤

⎠
⎟⎟⎞ = [

𝑥 + 𝑎 − (𝑦 + 𝑏)
𝑦 + 𝑏 + 2(𝑧 + 𝑐)

]

𝑆(𝑢) + 𝑆(𝑣) = 𝑆([
𝑥
𝑦
𝑧
]) + 𝑆([

𝑎
𝑏
𝑐
]) = [

𝑥 − 𝑦
𝑦 + 2𝑧] + [ 𝑎 − 𝑏

𝑏 + 2𝑐] = [
𝑥 − 𝑦 + 𝑎 − 𝑏

𝑦 + 2𝑧 + 𝑏 + 2𝑐
]

∴ 𝑆(𝑢 + 𝑣) = 𝑆(𝑢) + 𝑆(𝑣)

…for the second condition, 𝑆(𝑘𝑢) = 𝑘𝑆(𝑢), let 𝑢 = [
𝑥
𝑦
𝑧
] ∈ ℝ3, 𝑘 ∈ ℝ. Then

𝑆(𝑘𝑢) = 𝑆(𝑘[
𝑥
𝑦
𝑧
]) = 𝑆

⎝
⎜⎜
⎛

⎣
⎢
⎡𝑘𝑥

𝑘𝑦
𝑘𝑧⎦

⎥
⎤

⎠
⎟⎟
⎞ = [

𝑘𝑥 − 𝑘𝑦
𝑘𝑦 + 2𝑘𝑧

]

𝑘𝑆(𝑢) = 𝑘𝑆([
𝑥
𝑦
𝑧
]) = 𝑘[

𝑥 − 𝑦
𝑦 + 2𝑧] = [

𝑘𝑥 − 𝑘𝑦
𝑘𝑦 + 2𝑘𝑧

]

∴ 𝑆(𝑘𝑢) = 𝑘𝑆(𝑢)

Theorem
Every linear transformation 𝑇 : ℝ𝑛 → ℝ𝑚 can be written as

𝑇 ( ̄𝑥) = 𝐴 ̄𝑥

𝐴 is an 𝑚 × 𝑛 matrix called “the matrix associated to the linear transformation”.

For 𝑆([
𝑥
𝑦
𝑧
]) = [ 𝑥−𝑦

𝑥+2𝑧], (the below columns go 𝑥, 𝑦, 𝑧)

𝐴 = [1
1

−1
0

0
2]
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Lecture 7: subspaces
Section 3.5: subspaces
Definition of a subspace
A subspace of ℝ𝑛 is any collection 𝑆 of vectors in ℝ𝑛 such that:
1. ̄0 = (0, …, 0) ∈ 𝑆
2. 𝑈, 𝑉 ∈ 𝑆 ⇒ 𝑈 + 𝑉 ∈ 𝑆
3. 𝐾 ∈ ℝ, 𝑈 ∈ 𝑆, 𝐾𝑈 ∈ 𝑆

A subspace is in some way equivalent to the algebraic version of planes, lines, …, through the origin
in ℝ𝑛.

Examples
Subspaces of ℝ2:
1. For a point at the origin, the subspace would be {[0

0]}
• This set satisfies each of the three above conditions, so it’s a subset of ℝ2.

2. For a line 𝑦 = −𝑥 (you could use any line that goes through the origin)
• This line can be understood as all scalar multiples of a single vector, and a simple way to write

that is that 𝑆 = {𝑘[−1
1 ] : 𝑘 ∈ ℝ}, and that is equivalent to span([−1

1 ])
‣ This also satisfies the conditions, so it’s a valid subset of ℝ2

3. For ℝ2 itself: 𝑆 = ℝ2 = span([1
0], [

0
1])

• The vectors [1
0], [

0
1] are enough to express every possibility in ℝ2.

Subspaces of ℝ3:
1. 𝑆 = {[

0
0
0
]}

2. 𝑆 = line through the origin = span([
𝑎
𝑏
𝑐
])

3. 𝑆 = a plane in ℝ3 = span([
𝑎
𝑏
𝑐
], [

𝛼
𝛽
𝛾
])

4. 𝑆 = ℝ3 = span([
1
0
0
], [

0
1
0
], [

0
0
1
])

Theorem
Any subspace 𝑆 of ℝ𝑛 can be written as

𝑆 = span(𝑣1, …, 𝑣𝑘)

for some vectors 𝑣1, …, 𝑣𝑘 ∈ ℝ𝑛.

Examples

Example: Is 𝑆 = {[
𝑥
𝑦
𝑧
] ∈ ℝ3 : 𝑥 = 3𝑦, 𝑧 = −2𝑦} a subspace of ℝ3?

Substituting the conditions [
𝑥
𝑦
𝑧
]:

[
𝑥
𝑦
𝑧
] =

⎣
⎢
⎡ 3𝑦

𝑦
−2𝑦⎦

⎥
⎤ = 𝑦

⎣
⎢⎡

3
1

−2⎦
⎥⎤, 𝑦 ∈ ℝ ⇒ 𝑆 = span

⎝
⎜⎛

⎣
⎢⎡

3
1
2⎦
⎥⎤

⎠
⎟⎞

∴ 𝑆 is a subspace of ℝ3.
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Example: Is {[
𝑥
𝑦
𝑧
] ∈ ℝ3 : 𝑥 = 3𝑦 + 1, 𝑧 = −2𝑦} a subspace of ℝ3?

Substitute in the conditions in [
𝑥
𝑦
𝑧
]:

[
𝑥
𝑦
𝑧
] =

⎣
⎢
⎡3𝑦 + 1

𝑦
−2𝑦 ⎦

⎥
⎤ =

⎣
⎢
⎡ 3𝑦

𝑦
−2𝑦⎦

⎥
⎤ +

⎣
⎢⎡

1
0
0⎦
⎥⎤ = 𝑦

⎣
⎢⎡

3
1

−2⎦
⎥⎤ +

⎣
⎢⎡

1
0
0⎦
⎥⎤

Compare this to

span
⎝
⎜⎛

⎣
⎢⎡

3
1

−2⎦
⎥⎤,

⎣
⎢⎡

1
0
0⎦
⎥⎤

⎠
⎟⎞ =

⎩{
⎨
{⎧

𝑡
⎣
⎢⎡

3
1

−2⎦
⎥⎤ + 𝑠

⎣
⎢⎡

1
0
0⎦
⎥⎤ : 𝑡, 𝑠 ∈ ℝ

⎭}
⎬
}⎫

But there is no parameter in the second vector from when we substituted the conditions (i.e. [
1
0
0
]).

This suggests that 𝑆 is not a subspace of ℝ3, but now we need to go back and show that one of the
conditions fails.

Let’s try checking whether (1) from the definition above fails:

⎣
⎢
⎡0

0
0⎦
⎥
⎤ =?

⎣
⎢
⎡3𝑦 + 1

𝑦
−2𝑦 ⎦

⎥
⎤

Looking at the second row, 𝑦 = 0. However, it should also be that 0 = 3𝑦 + 1. Plugging in 𝑦 = 0, that
gives us 0 = 3(0) + 1 ⇝ 0 = 1. Obviously that’s not true, so this fails. ∴ 𝑆 is not a subspace of ℝ3.

We can also try checking (3) from the defintion of a subspace: let’s choose 0 for 𝑘 and [
1
0
0
] for 𝑢. Then

𝑘𝑢 should be in 𝑆. However, 0[
1
0
0
] = [

0
0
0
] ∉ 𝑆. (We already showed that [

0
0
0
] is not in 𝑆.)

Subspaces associated with matrices
Definition
Let 𝐴 be an 𝑚 × 𝑛 matrix. There are 𝑛 entries in each row, so 𝑚 rows are in ℝ𝑛. Conversely, there are
𝑚 entries in each column, so 𝑛 columns are in ℝ𝑚

1. Row space of 𝐴: row(𝐴) = spanned set by the rows of 𝐴
2. Column space of 𝐴: col(𝐴) = spanned set by the columns of 𝐴
3. Null space: null(𝐴) = solutions to 𝐴 ̄𝑥 = 0 (which is a homogenous system).

Problems
Determine if a vector is in one of the given subspaces and find bases and dimensions of each subspace.
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Examples

Given that 𝐴 = [
1
0
3

−1
1

−3
],

1. is 𝑏 = [
1
2
3
] in col(𝐴)?

By the definiton of column space,

col(𝐴) = span
⎝
⎜⎛

⎣
⎢⎡

1
0
3⎦
⎥⎤,

⎣
⎢⎡

−1
1

−3⎦
⎥⎤

⎠
⎟⎞

Then we can say that

𝑏 =
⎣
⎢⎡

1
2
3⎦
⎥⎤ ∈ col(𝐴) ⇔

⎣
⎢⎡

1
2
3⎦
⎥⎤ = 𝑥

⎣
⎢⎡

1
0
3⎦
⎥⎤ + 𝑦

⎣
⎢⎡

−1
1

−3⎦
⎥⎤

Turning this into a system of equations,

⎩{
⎨
{⎧1 = 𝑥 − 𝑦

2 = 𝑦
3 = 3𝑥 − 3𝑦

⇝
⎣
⎢⎡

1
0
3

−1
1

−3

1
2
3⎦
⎥⎤ ⟶⟶⟶⟶⟶⟶⟶⟶⟶⟶⟶⟶⟶⟶⟶

𝑅3←𝑅3−3𝑅1

⎣
⎢⎡

1
0
0

−1
1
0

1
2
0⎦
⎥⎤

This system is consistent, ∴ [
1
2
3
] ∈ col(𝐴).

But! To do this even faster, you can jumpt to the fact that 𝑏 ∈ col(𝐴) ⇔ [𝐴 𝑏] is consistent.

2. is 𝑏 = [
1
2
4
] in col(𝐴)?

Jumping to the matrix, we have

⎣
⎢⎡

1
0
3

−1
1

−3

1
2
4⎦
⎥⎤ ⟶⟶⟶⟶⟶⟶⟶⟶⟶⟶⟶⟶⟶⟶⟶

𝑅3←𝑅3−3𝑅1

⎣
⎢⎡

1
0
0

−1
1
0

1
2
1⎦
⎥⎤

The last row makes this matrix inconsistent, ∴ [
1
2
4
] ∉ col(𝐴).

Lecture 7: subspaces
compiled on Wednesday, October 2, 2024

21/120
back to contents ↑



3. is [3 1] in row(𝐴)?

By definition, row(𝐴) = span([1 −1], [0 1], [3 −3]). Hence

[3 1] ∈ row(𝐴) ⇔ [3 1] = 𝑥[1 −1] + 𝑦[0 1] + 𝑧[3 −3] ⇔ {
3 = 𝑥 + 0𝑦 + 3𝑧
1 = −𝑥 + 𝑦 − 3𝑧

Now putting that into a matrix:

[ 1
−1

0
1

3
−3

3
1] ⟶⟶⟶⟶⟶⟶⟶⟶⟶⟶⟶⟶⟶⟶

𝑅2←𝑅2+𝑅1
[1
0

0
1

3
0

3
4]

The system is consistent and has a solution, so [3 1] ∈ row(𝐴). Furthermore, if we take 𝑧 = 0 to get a
particular solution, then 𝑦 = 4, 𝑥 = 3, and

[3 1] = 3[1 −1] + 4[0 1] + 0[3 −3]

Note: we can notice that the rows in 𝐴 became columns in our augmented matrix above. So given [3 1]

and 𝐴 = [
1
0
3

−1
1

−3
], then we can form an augmented matrix by writing rows as columns: [1

0
0
1

3
0

3
4].

Definiton: given a matrix 𝐴, we define the transpose of 𝐴 as

𝐴𝑇 =
⎣
⎢
⎡―

―
―

col 1
col 2
col 3

―
―
―⎦

⎥
⎤

Notice that (𝐴𝑇 )𝑇 = 𝐴. Hence, 𝑏 = [―] ∈ ℝ𝑛 is in row(𝐴) ⇔ [𝐴𝑇 𝑏𝑇 ] is consistent.

4. is [−1
1 ] in null(𝐴)?

Recall that null(𝐴) = {𝑥 ∈ ℝ𝑛 : 𝐴𝑥 = 0}. [−1
1 ] is in null([

1
0
3

−1
1

−3
]) if and only if:

⎣
⎢⎡

1
0
3

−1
1

−3⎦
⎥⎤[

−1
∗
1

] =?

⎣
⎢
⎡0

0
0⎦
⎥
⎤

but

⎣
⎢⎡

1
0
3

−1
1

−3⎦
⎥⎤[

−1
∗
1

] = [
2
∗
∗
] ≠

⎣
⎢
⎡0

0
0⎦
⎥
⎤
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Lecture 8: subspaces, bases, & dimension
Bases and dimension
Goal: identify for a subspace 𝑆 ⊆ ℝ𝑛 such that vectors 𝑣1, …, 𝑣𝑘 so that
1. span(𝑣1, …, 𝑣𝑘) = 𝑆
2. 𝑣1, …, 𝑣𝑘 are linearly independent

• 𝑣1, …, 𝑣𝑘 are linearly independent if 𝑎1𝑣1 + … + 𝑎𝑘𝑣𝑘 = 0 ⇒ 𝑎1 = 0, …, 𝑎𝑘 = 0 is the only so-
lution.

• When there is more than one way to get a solution, the equations are linearly dependent.
• In other terms, 𝑣1, …, 𝑣𝑘 are linearly independent ⇔ 𝐴𝑥 = 0 has a unique solution.

‣ 𝐴 in here is formed like so:
–

𝐴 =
⎣
⎢⎡

|
𝑣1

|

|
𝑣2

|

|
𝑣3

| ⎦
⎥⎤

‣ 𝐴𝑥 = 0 has a unique solution if:
– [𝐴 0] → ⋯ → [𝐵 0] rank(𝐵) = 𝑘 = # of given vectors where 𝐵 is in row-echelon form

Example: are [
1
1
0
], [

1
1
1
], [

3
3
2
] linearly independent?

Solution:

⎣
⎢
⎡1

1
0

1
1
1

3
3
2

0
0
0⎦
⎥
⎤ ⟶⟶⟶⟶⟶⟶⟶⟶⟶⟶⟶⟶⟶⟶

𝑅2←𝑅2−𝑅1

⎣
⎢
⎡1

0
0

1
0
1

3
0
2

0
0
0⎦
⎥
⎤ ⟶⟶⟶⟶⟶⟶⟶⟶⟶

𝑅3↔𝑅2

⎣
⎢
⎡1

0
0

1
1
0

3
2
0

0
0
0⎦
⎥
⎤ ⇝ rank(𝐵) = 2

Meanwhile, there were 3 vectors given. ∴ the given vectors are linearly dependent.
For a further example, this means any one vector depends on the others:

1
⎣
⎢⎡

1
1
0⎦
⎥⎤ + 2

⎣
⎢⎡

1
1
1⎦
⎥⎤ =

⎣
⎢⎡

3
3
2⎦
⎥⎤

So

span
⎝
⎜⎛

⎣
⎢⎡

1
1
0⎦
⎥⎤,

⎣
⎢⎡

1
1
1⎦
⎥⎤,

⎣
⎢⎡

3
3
2⎦
⎥⎤

⎠
⎟⎞ = span

⎝
⎜⎛

⎣
⎢⎡

1
1
0⎦
⎥⎤,

⎣
⎢⎡

1
1
1⎦
⎥⎤

⎠
⎟⎞

Hence [
1
1
0
], [

1
1
1
] form a basis for 𝑆 = span([

1
1
0
], [

1
1
1
]).

Example: explain why [
1
0
0
], [

0
1
0
], [

0
0
1
] is a basis for ℝ3.

Solution:
1. Are they linearly independent? Yes!

⎣
⎢
⎡1

0
0

0
1
0

0
0
1⎦
⎥
⎤ ⇒ rank = 3 = # columns ⇒ 𝐴𝑥 = 0 has a unique solution ⇒

vectors are
linearly independent

2. Is span([
1
0
0
], [

0
1
0
], [

0
0
1
]) = ℝ3? Yes, because:

Given [
𝑥
𝑦
𝑧
] = 𝑥[

1
0
0
] + 𝑦[

0
1
0
] + 𝑧[

0
0
1
].
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Definiton: the dimension of a subspace 𝑆 of ℝ𝑛 is

dim(𝑆) = # of vectors in a basis for 𝑆

Examples:
1. dim(ℝ2) = 2 because {[1

0], [
0
1]} is a basis. This is called the standard basis.

2. dim(ℝ3) = 3 because a basis for ℝ3 is {[
1
0
0
], [

0
1
0
], [

0
0
1
]}.

3. Given 𝑆 = span([
1
1
0
], [

1
1
1
]), dim(𝑆) = 2 because [

1
1
0
], [

1
1
1
] is a basis for 𝑆.
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Lecture 9: bases for subspaces of matrices and coordinate systems
in ℝ𝑛

Example: Given

𝐴 =

⎣
⎢
⎢
⎡ 1

2
−3
4

1
−1
2
1

3
0
1
6

1
1

−2
1

6
−1
1
3 ⎦

⎥
⎥
⎤

find bases and dimensions for row(𝐴) col(𝐴), and null(𝐴).

Solution: in general, first compute the row-echelon form of the given matrix, then proceed to compute
the bases and dimension.

𝐴 =

⎣
⎢
⎢
⎡ 1

2
−3
4

1
−1
2
1

3
0
1
6

1
1

−2
1

6
−1
1
3 ⎦

⎥
⎥
⎤

⟶⟶⟶⟶⟶⟶⟶⟶⟶
to RREF

𝐵 =

⎣
⎢
⎢
⎢
⎢
⎡ 1

0

0
0

0

1
0
0

1

2

0
0

0

0

1
0

−1

3

4
0 ⎦

⎥
⎥
⎥
⎥
⎤

From the rows with pivots above (in circles), a basis for row(𝐴) is:

[1 0 1 0 −1], [0 1 2 0 3], [0 0 0 1 4]

hence dim(row(𝐴)) = 3

For col(𝐴): identify columns in 𝐴 which correspond to pivots in REF (which is B, above). Hence a
basis is:

𝐵 =

⎩{
{⎨
{{
⎧

⎣
⎢
⎢
⎡ 1

2
−3
4 ⎦

⎥
⎥
⎤

,

⎣
⎢
⎢
⎡ 1

−1
2
1 ⎦

⎥
⎥
⎤

,

⎣
⎢
⎢
⎡ 1

1
−2
1 ⎦

⎥
⎥
⎤

⎭}
}⎬
}}
⎫

, dim(col(𝐴)) = 3

Theorem:

dim(col(𝐴)) = dim(row(𝐴)) = rank(𝐴)

span(𝐴) = span(𝐵) where 𝐵 is REF or RREF of 𝐴

For null(𝐴): we need to compute the parametric form of 𝐴 ̄𝑥 = 0, which can be obtained from the REF
of 𝐴 or RREF of 𝐴.

𝐵 =

[𝑥 𝑦 𝑧 𝑤 𝑡]

⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞

⎣
⎢
⎢
⎢
⎢
⎡ 1

0

0
0

0

1
0
0

1

2

0
0

0

0

1
0

−1

3

4
0

0

0

0
0⎦
⎥
⎥
⎥
⎥
⎤

⇒
⎩{
⎨
{⎧𝑥 + 𝑧 − 𝑡 = 0

𝑦 + 2𝑧 + 3𝑡 = 0
𝑤 + 4𝑡 = 0

⇒
⎩{
⎨
{⎧𝑥 = −𝑧 + 𝑡

𝑦 = −2𝑧 − 3𝑡
𝑤 = −4𝑡

𝑧, 𝑡 are free; 𝑥, 𝑦, 𝑤 are leading variables.
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⇒

⎣
⎢
⎢
⎢
⎡

𝑥
𝑦
𝑧
𝑤
𝑡 ⎦
⎥
⎥
⎥
⎤

=

⎣
⎢
⎢
⎢
⎡ −𝑧 + 𝑡

−2𝑧 − 3𝑡
𝑧

−4𝑡
𝑡 ⎦

⎥
⎥
⎥
⎤

= 𝑧

⎣
⎢
⎢
⎢
⎡−1

−2
1
0
0 ⎦

⎥
⎥
⎥
⎤

+ 𝑡

⎣
⎢
⎢
⎢
⎢
⎡ 1

−3
0

−4
1 ⎦

⎥
⎥
⎥
⎥
⎤

Therefore a basis for null(𝐴) and its dimension are:

𝐵 =

⎩{
{{
⎨
{{
{⎧

⎣
⎢
⎢
⎢
⎡−1

−2
1
0
0 ⎦

⎥
⎥
⎥
⎤

,

⎣
⎢
⎢
⎢
⎢
⎡ 1

−3
0

−4
1 ⎦

⎥
⎥
⎥
⎥
⎤

⎭}
}}
⎬
}}
}⎫

, dim(null(𝐴)) = 2

Rank theorem

𝑛 = # of columns of A = dim

⎝
⎜⎜
⎜⎜
⎜⎜
⎛

row(𝐴)⏟
# of pivots

 = # of leading variables⎠
⎟⎟
⎟⎟
⎟⎟
⎞

+ dim

⎝
⎜⎜
⎜⎜
⎜⎛

null(𝐴)⏟
# of free
 variables ⎠

⎟⎟
⎟⎟
⎟⎞

↑ this looks bad so I’ll fix it later
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Section 6.3: coordinate systems in ℝ𝑛

Definition: Given a basis 𝐵 = {𝑣1, 𝑣2, …, 𝑣𝑛} of ℝ𝑛 and a vector ̄𝑥 ∈ ℝ𝑛 then:

̄𝑥 = 𝑎1𝑣1 + 𝑎2𝑣2 + … + 𝑎𝑛𝑣𝑛

for some 𝑎1, …, 𝑎𝑛. The coordinate vector of ̄𝑥 with respect to the basis 𝐵 is:

[ ̄𝑥]𝐵 =

⎣
⎢
⎢
⎡

𝑎1
𝑎2
⋮

𝑎𝑛⎦
⎥
⎥
⎤

We can replace ℝ𝑛 by a subspace 𝑆 of ℝ𝑛. In that case, the number of vectors in 𝐵 will be equal to
dim(𝑆).

Example: Let 𝜀 = {𝑒1, 𝑒2, 𝑒3} be the standard basis of ℝ3, so {𝑒1, 𝑒2, 𝑒3} = {[
1
0
0
], [

0
1
0
], [

0
0
1
]}.

What is [𝑥̄]𝜀 if ̄𝑥 = [
−1
0
𝜋

]?

Solution:

[
−1
0
𝜋

] = −1
⎣
⎢⎡

1
0
0⎦
⎥⎤ + 0

⎣
⎢⎡

0
1
0⎦
⎥⎤ + 𝜋

⎣
⎢⎡

0
0
1⎦
⎥⎤

∴ [ ̄𝑥]𝜀 = [
−1
0
𝜋

]

Example: Let 𝐵 = {[
1

−1
0

], [
3
2
1
]} be a basis of a subspace 𝑆 of ℝ3. Indeed, 𝑆 = span(𝐵).

Is ̄𝑥 = [
7
8
3
] in 𝑆? If yes, compute [𝑥̄]𝐵.

Solution: Is [
1

−1
0

3
2
1

7
8
3
] consistent?

⎣
⎢
⎡ 1

−1
0

3
2
1

7
8
3⎦
⎥
⎤ → ⋯ →

⎣
⎢
⎡1

0
0

3
1
0

7
3
6⎦
⎥
⎤

This is consistent, so ̄𝑥 is in 𝑆. To compute [𝑥̄]𝐵, we solve the system:

{𝑎 + 3𝑏 = 7
𝑏 = 3

⇝ {𝑎 = −2
𝑏 = 3

Then

⎣
⎢
⎡7

8
3⎦
⎥
⎤ = −2

⎣
⎢⎡

1
−1
0 ⎦

⎥⎤ + 3
⎣
⎢⎡

3
2
1⎦
⎥⎤

⇝ [ ̄𝑥]𝐵 = [−2
3 ]
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Example: Given [𝑥]𝐵 = 1
5[13

6 ] and 𝐵 = {[2
1], [

−1
2 ]}, compute ̄𝑥.

Solution: By definition, [𝑥]𝐵 = [𝑎
𝑏] ⇒ ̄𝑥 = 𝑎[2

1] + 𝑏[−1
2 ], so ̄𝑥 = 13

5 [2
1] + 6

5[−1
2 ].
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Lecture 10: change of bases

Section 6.3: coordinate systems in ℝ𝑛, continued
This is the last topic on the first exam (this Thursday)

Let 𝑆 be a subspace of ℝ𝑛 and let {𝐵 = 𝑢1, …, 𝑢𝑘} and 𝐶 = {𝑣1, …, 𝑣𝑘}, two bases of 𝑆. For any ̄𝑥 ∈
𝑆, we have:

1. Using the basis 𝐵:

̄𝑥 = 𝑎1𝑢1 + 𝑎2𝑢2 + … + 𝑎𝑘𝑢𝑘 ⇔ [𝑥̄]𝐵 =
⎣
⎢
⎡

𝑎1
𝑎2

⋮
𝑎3⎦

⎥
⎤ ∈ ℝ𝑘

2. Using the basis 𝐶 :

̄𝑥 = 𝑏1𝑣1 + 𝑏2𝑣2 + … + 𝑏𝑘𝑣𝑘 ⇔ [𝑥̄]𝐶 =

⎣
⎢⎢
⎡

𝑏1

𝑏2

⋮
𝑏3⎦

⎥⎥
⎤

∈ ℝ𝑘

How could we compute [𝑥̄]𝐵 from [𝑥̄]𝐶  (and vice-versa)? We use a change-of-basis matrix.

Note: there were some diagrams about mapping matrices between different “worlds” (spaces?) but that
would be really hard to pit in here, and also I’m typing this on an iPad right now, so…

What we’re looking for is a function that will map a vector in [𝑥̄]𝐵 to [𝑥̄]𝐶 . This function will be a
change-of-basis matrix 𝑃𝐶←𝐵, which defines the applicable linear transformation. (You can, of course,
also find the opposite for going from 𝐶 to 𝐵.)

So how do we compute 𝑃𝐶←𝐵? We use the Gauss-Jordan method.

Theorem: Gauss-Jordan method for computing a change-of-basis matrix

[([𝑣1]𝐸, …, [𝑣𝑘]𝐸)⏟⏟⏟⏟⏟⏟⏟
Basis 𝐶

([𝑢1]𝐸, …, [𝑢𝑘]𝐸)⏟⏟⏟⏟⏟⏟⏟
Basis 𝐵

] ⟶⟶⟶⟶⟶⟶⟶⟶⟶⟶⟶⟶⟶⟶⟶⟶⟶⟶⟶⟶⟶⟶⟶⟶⟶⟶
Gauss-Jordan elimination

[𝐼𝑘 𝑃𝐶←𝐵]

Moreover,

𝑃𝐵←𝐶 = (𝑃𝐶←𝐵)−1
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Example: Let 𝐵 = {[−1
2 ], [ 2

−1]} and 𝐶 = {[1
0], [

1
1]} be bases of ℝ2. Assume [𝑥̄]𝐵 = [2

3].

1. Compute 𝑥

[ ̄𝑥]𝐵 = [2
3] ⇒ ̄𝑥 = 2[−1

2 ] + 3[ 2
−1] = [4

1]

2. Compute 𝑃𝐶←𝐵

[1
0

1
1

−1
2

2
−1] ⟶⟶⟶⟶⟶⟶⟶⟶⟶⟶⟶⟶⟶⟶

𝑅1←𝑅1−𝑅2
[1
0

0
1

−3
2

3
−1] ⇒ 𝑃𝐶←𝐵 = [−3

2
3

−1]

3. Compute [𝑥̄]𝐶

[ ̄𝑥]𝐶 = 𝑃𝐶←𝐵[ ̄𝑥]𝐵 = [−3
2

3
−1][2

3] = [3
1]

4. Compute 𝑃𝐵←𝐶

𝑃𝐵←𝐶 = (𝑃𝐶←𝐵)−1 ⇝ [−3
2

3
−1]

−1
=

1
−3

[−1
−2

−3
−3] = 𝑃𝐵←𝐶

Example: Consider the basis 𝐵 = {[
1
1
0
], [

0
1
1
], [

1
0
1
]} of ℝ3 and let [𝑥̄]𝐵 = [

1
−1
3

].

1. Find ̄𝑥

𝑥 = 1
⎣
⎢⎡

1
1
0⎦
⎥⎤ + −1

⎣
⎢⎡

0
1
1⎦
⎥⎤ + 3

⎣
⎢⎡

1
0
1⎦
⎥⎤ =

⎣
⎢⎡

4
0
2⎦
⎥⎤

2. Find 𝑃𝐵←𝐸  (the change-of-coordinate matrix)

[basis 𝐵 basis 𝐸]

⎣
⎢
⎡1

1
0

0
1
1

1
0
1

1
0
0

0
1
0

0
0
1⎦
⎥
⎤ ⟶⟶⟶⟶⟶⟶⟶⟶⟶⟶⟶⟶⟶⟶

Gauss-Jordan

⎣
⎢
⎢
⎢
⎡1

0

0

0

1

0

0

0

1

1
2

−1
2

1
2

1
2
1
2

−1
2

−1
2

1
2
1
2 ⎦

⎥
⎥
⎥
⎤

𝑃𝐵←𝐸 =
1
2
⎣
⎢⎡

1
−1
1

1
1

−1

−1
1
1 ⎦

⎥⎤

3. If ̄𝑦 = [
1
0

−2
], find [ ̄𝑦]𝐵

[ ̄𝑦]𝐵 = 𝑃𝐵←𝐸[ ̄𝑦]𝐸 =
1
2
⎣
⎢⎡

1
−1
1

1
1

−1

−1
1
1 ⎦

⎥⎤

⎣
⎢⎡

1
0
2⎦
⎥⎤ =

1
2
⎣
⎢⎡

−1
1
3 ⎦

⎥⎤
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Lecture 11: vector spaces, bases, and dimension
Firstly, what is a field? It’s an algebraic structure with two operations + and ×, where we can add,
subtract, multiply, and divide by nonzero elements. Examles of fields include:
• the real numbers (𝔽 = ℝ)
• the set of complex numbers (𝔽 = ℂ)
• the set of rational numbers (𝔽 = ℚ)

However, these things don’t form a field:
• polynomials
• integers (ℤ)

‣ this is because if you divide one integer by another, you could end up with a non-integer

Definition of a vector field
A vector space over a field 𝔽 is a set 𝑉 ≠ 0 on which two operations, called addition and scalar multi-
plication, are defined so that: for all 𝑢, 𝑣, 𝑤 ∈ 𝑉  and 𝑎, 𝑏 ∈ 𝔽, (fill in here)
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Example: here are some example of famous vector spaces…
1. 𝑉 = ℝ𝑛, 𝔽 = ℝ, with operations:

• (𝑢1, …, 𝑢𝑛) + (𝑣1, …, 𝑣𝑛) = (𝑢1 + 𝑣1, …𝑢𝑛 + 𝑣𝑛) ∝ (𝑢1, …, 𝑢𝑛) = (∝ 𝑢1, …, ∝ 𝑢𝑛) for any 
∝∈ ℝ = 𝔽

• Basis for ℝ𝑛: 𝐸 = {𝑒1, …, 𝑒𝑛} standard basis; dim(ℝ𝑛) = #𝐸 = 𝑛
• ⃗0 = (0, …, 0) zero vector

2. 𝑉 = ℙ𝑛 = {𝑎0 + 𝑎1𝑥 + ⋯ + 𝑎𝑛𝑥𝑛 : 𝑎𝑖 ∈ ℝ}, 𝔽 = ℝ, with operations:
• (𝑎0 + 𝑎1𝑥 + ⋯ + 𝑎𝑛𝑥𝑛) + (𝑏0 + 𝑏1𝑥 + ⋯ + 𝑏𝑛𝑥𝑛) = (𝑎0 + 𝑏0) = (𝑎1 + 𝑏1)𝑥 + ⋯ + (𝑎𝑛 +

𝑏𝑛)𝑥𝑛

• 𝛼(𝑎0 + 𝑎1𝑥 + ⋯ + 𝑎𝑛𝑥𝑛) = (𝛼𝑎0) + (𝛼𝑎1)𝑥 + ⋯ + (𝛼𝑎𝑛)𝑥𝑛

• dim(ℙ𝑛) = #𝐵 = 𝑛 + 1
• In particular, ℙ2 = {𝑎0 + 𝑎1𝑥 + 𝑎2𝑥2 : 𝑎0, 𝑎1, 𝑎2 ∈ ℝ}.

‣ 1 + 𝑥 is in ℙ2, 1 is in ℙ2, 0 is in ℙ2, 𝑥2, sin(ℙ2) (not sure what rhose last two mean)
‣ Observe that ℙ2 = span(1, 𝑥, 𝑥2).
‣ Moreover, 𝐵 = {1, 𝑥, 𝑥2} is a basis for ℙ2

– because 𝑎0 ⋅ 1 + 𝑎1𝑥 + 𝑎2𝑥2 = 0 + 0𝑥 + 0𝑥2 ⇒ 𝑎0 = 𝑎1 = 𝑎2 = 0
– dim(ℙ2) = #𝐵 = 3

3. Matrices of size 𝑚 × 𝑛, 𝔽 = ℝ operations given entry-wise.
• For example,

mat2×2(ℝ) = {[𝑎
𝑐

𝑏
𝑑
] : 𝑎, 𝑏, 𝑐, 𝑑 ∈ ℝ}

[𝑎
𝑐

𝑏
𝑑
] + [𝛼 𝛽 𝜒 𝛿] = [

𝑎 + 𝛼
𝑐 + 𝛾

𝑏 + 𝛽
𝑑 + 𝛿

]

𝛼[𝑎
𝑐

𝑏
𝑑
] = [𝛼𝑎

𝛼𝑐
𝛼𝑏
𝛼𝑑

]

• In mat2×2(ℝ) the “zero vector” is

[0
0

0
0]

• Also observe the following:

[4
3

1
−1] = 4[1

0
0
0] + 1[0

0
1
0] + 3[0

1
0
0] + −1[0

0
0
1]

Then 𝐵 = {[1
0

0
0], [

0
0

1
0], [

0
1

0
0], [

0
0

0
1]} is a basis for mat2×2(ℝ). So dim(mat2×2(ℝ)) = #𝐵 = 4.

• In general, dim(mat𝑚×𝑛(ℝ)) = 𝑚 ⋅ 𝑛, and the standard basis is

𝐵 =

⎩{
{⎨
{{
⎧

⎣
⎢
⎢
⎡1

0
⋮
0

0
 
 
⋯

⋯
 
 
⋯

0
 
 
0⎦
⎥
⎥
⎤

, ⋯

⎠
⎟⎟
⎟⎟
⎞

}
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Lecture 12: more on vector spaces
Example: 𝑉 = ℤ, 𝐹 = ℝ, operations o 𝑉  as usual (addition of integers ans scalar multiplication be-
tween integers and reals). Is ℤ a vector space over ℝ?

Solution: Properties 1 through 5 hold because the addition is the usual addition of integers. We need
to check properties 6-10. (from definitions document)

(6) 𝑎 ∈ 𝑟, 𝑢 ∈ 𝑉 ⇒ 𝑎𝑢 ∈ 𝑉 = ℤ?

No, because

𝑎 = 5.5, 𝑢 = 3 ∈ ℤ

𝑎 ∗ 𝑢 = (5.5)(3) = 16.5

and 16.5 is not an integer.
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Example: 𝑉 = ℝ2, 𝔽 = ℝ, and operations:

sum as usual: [𝑥
𝑦] + [𝑧

𝑤] = [𝑥+𝑧
𝑦+𝑤]

scalar multiplication: 𝑥⏟
ℝ

⋅ [𝑥
𝑦]⏟

ℝ2

= [𝑎𝑥
0 ]

Solution:

Because addition is as usual, properties 1-5 hold. Now we need to check 6-10:

6) 𝛼 ∈ ℝ, [𝑥𝑦], [𝑧
𝑤] ∈ ℝ2 ⇒ 𝛼[𝑥𝑦] = [𝛼𝑥

0 ] ∈ ℝ2?

✓ yes

7) 𝛼 ∈ ℝ2, [𝑥𝑦], [𝑧
𝑤] ∈ ℝ2 ⇒

𝛼([𝑥𝑦] + [𝑧
𝑤])

⏟⏟⏟⏟⏟⏟⏟
𝛼(𝑢+𝑣)

= 𝛼[𝑥 + 𝑧
𝑦 + 𝑤] = [𝛼(𝑥 + 𝑧)

0
] = [𝛼𝑥

0 ] + [𝛼𝑧
0 ] = 𝛼[𝑥𝑦] + 𝛼[𝑧

𝑤]

✓ yes

8) 𝛼, 𝛽, ∈ ℝ, [𝑥𝑦] ∈ ℝ2 ⇒

(𝛼 + 𝛽)[𝑥𝑦] = [(𝛼 + 𝛽)(𝑥)
0

] = [𝛼𝑥 + 𝛽𝑥
0

] = [𝛼𝑥
0 ] + [𝛽𝑥

0
] = 𝛼[𝑥𝑦] + 𝛽(𝑥, 𝑦)

∴ (𝑎 + 𝑏)𝑢 = 𝑎𝑢 + 𝑏𝑢
∴ ✓ yes

9) 𝛼, 𝛽 ∈ ℝ, [𝑥𝑦] ∈ ℝ2

(𝛼𝛽)[𝑥𝑦] = [(𝛼𝛽)𝑥
0

] = [𝛼(𝛽𝑥)
0

] = 𝛼[𝛽𝑥
0

] = 𝛼(𝛽[𝑥𝑦])

∴ (𝑎𝑏)𝑢 = 𝑎(𝑏𝑢)
∴ ✓ yes

10) [𝑥𝑦] ∈ ℝ2 ⇒ 1[𝑥𝑦] = [1 ⋅ 𝑥
0 ] = [𝑥0] ⇝ ☒ no

Hence ℝ2 with the given operations is not a vector space over ℝ.
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Subspaces, bases, and dimension
Example: Is 𝑆 = {[𝑎

𝑐
𝑏
𝑑
] : 𝑎𝑑 = 0} a subspace of Mat2×2(ℝ)?

Soluton: 1) [0
0

0
0] is clearly in 𝑆. ✓

2) The sum of two matrices in 𝑆 is not always itself in 𝑆. For example:

[−1
0

0
0] ∈ 𝑆, [0

0
0

−1] ∈ 𝑆

but

[−1
0

0
0] + [0

0
0

−1] = [−1
0

0
−1]

and

𝑎𝑑 = −1 ∗ −1 = 1 ≠ 0

∴ S is not a subspace.
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Example: Is 𝑆 = {𝐴 ∈ Mat2×2(ℝ) : 𝐴𝑇 = 𝐴}. Is 𝑆 a subspace of Mat2×2? If so, find a basis for 𝑆.
(𝑆 is the set of all symmetric matrices of size 2x2.)

Solution:

Firstly,

[0
0

0
0]

𝑇
= [0

0
0
0] ⇒ [0

0
0
0] ∈ 𝑆

∴ 𝐴𝑇 = 𝐴 ✓

Next, assume 𝐴, 𝐵 ∈ 𝑆. Then

(𝐴 + 𝐵)𝑇 = 𝐴𝑇 + 𝐵𝑇 = 𝐴 + 𝐵 ∴ ✓

(because 𝐴 = 𝐴𝑇  and 𝐵 = 𝐵𝑇 )

Finally, for 𝑎 ∈ ℝ, 𝐴 ∈ 𝑆:

(𝑎𝐴)𝑇 = 𝑎𝐴𝑇 = 𝑎𝐴 ∴ ✓

(because 𝐴 = 𝐴𝑇  since 𝐴 is in 𝑆)

Therefore, since all three criteria hold, 𝑆 is a subspace of Mat2×2(ℝ).

Ok now finding a basis for 𝑆

𝐴 = [𝑎
𝑐

𝑏
𝑑
], 𝐴𝑇 = [𝑎𝑏

𝑐
𝑑]

𝐴 = 𝐴𝑇 ⇔
⎩{
⎨
{⎧𝑎 = 𝑎

𝑏 = 𝑐
𝑑 = 𝑑

So the matrices in 𝑆 are of the form [𝑎
𝑏

𝑏
𝑑
]. Hence,

[𝑎
𝑏

𝑏
𝑑
] = 𝑎[1

0
0
0] + 𝑏[0

1
1
0] + 𝑑[0

0
0
1]

And that means that a basis for 𝑆 is

{[1
0

0
0], [0

1
1
0], [0

0
0
1]}

Exam 1 review lecture
Question 1: Consider the system 𝐴 ̄𝑥 = 𝑏 with the augmented matrix

[𝐴 𝑏] =
⎣
⎢
⎡1

2
1

−2
−4
−2

1
1
2

3
0

−3

1
5
4⎦
⎥
⎤

Which of the following ̄𝑥 are solutions of the system?

a) ̄𝑥 =
⎣
⎢
⎡

0
0
0
0⎦
⎥
⎤ and ̄𝑥 =

⎣
⎢
⎡

1
1
1
1⎦
⎥
⎤ b) ̄𝑥 =

⎣
⎢
⎡

2
0
1
0⎦
⎥
⎤ and

⎣
⎢
⎡

0
0
5
2⎦
⎥
⎤, c) ̄𝑥 =

⎣
⎢
⎡

0
0
0
0⎦
⎥
⎤ and ̄𝑥 =

⎣
⎢
⎡

3
1
0
1⎦
⎥
⎤, d) ̄𝑥 =

⎣
⎢
⎡

3
1
0
1⎦
⎥
⎤, e) there are

no solutions

Solution: (b) is correct. Just check whether the vectors are solutions, and if there is a solution, that’s
the right answer since there is only one soluton (jack note to self: add more here)
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Question 2: If 𝐴 is a 2x2 matrix such that

(2𝐴𝑇 − 3[ 1
−1

2
2]

𝑇
)

𝑇

= [ 2
−1

3
2]

then what is the matrix 𝐴?

Solution:

• Apply the following properties of the transpose:
1. (𝐴 + 𝐵)𝑇 = 𝐴𝑇 + 𝐵𝑇

2. (𝑘𝐴)𝑇 = 𝑘𝐴𝑡

3. (𝐴𝑇 )𝑇 = 𝐴

• So then we can do

(2𝐴𝑇 − 3[ 1
−1

2
2]

𝑇
)

𝑇

= [ 2
−1

3
2]

2𝐴 − 3[ 1
−1

2
1] = [ 2

−1
3
2]

2𝐴 = [ 2
−1

3
2] + 3[ 1

−1
2
1]

𝐴 =
1
2
([ 2

−1
3
2] + 3[ 1

−1
2
2])

𝐴 =
1
2
[ 5
−4

9
5]

Question 3: which of the following are not satisfied for all matrices 𝐴, 𝐵?
1. (𝐴𝑇 )𝑇  → true
2. (𝐴 + 𝐵)2 = 𝐴2 + 2𝐴𝐵 + 𝐵2 → false

• This is not valid because 𝐴𝐵 ≠ 𝐵𝐴, so we can’t simplify to 2𝐴𝐵
3. 𝐴(𝐵 + 𝐶) = 𝐴𝐵 + 𝐵𝐶 → true
4. (𝐴 − 𝐵)(𝐴 + 𝐵) = 𝐴2 − 𝐵2 → false
• there are more here which I missed
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Question 4: A map 𝑇 : ℝ2 → ℝ2 which is a counterclockwise rotation about the origin through 𝜋
2

radians is a linear transformation. What is the standard matrix [𝑇 ] of 𝑇 ?

Solution:
• Every linear transformation 𝑇 : ℝ𝑛 → ℝ𝑚 has associated a standard matrix [𝑇 ] for which 𝑇 ( ̄𝑥) =

[𝑇 ] ̄𝑥. Indeed:

[𝑇 ] =

⎣
⎢
⎢
⎡ |

𝑇 (𝑒1)
|

|
𝑇 (𝑒2)

|

 
⋯
 

|
𝑇 (𝑒𝑛)

| ⎦
⎥
⎥
⎤

So

𝑇([𝑥𝑦]) =
⎣
⎢⎡

𝑥 + 𝑦
𝑥 − 𝑦

𝑥 ⎦
⎥⎤ ⇝ [𝑇 ] =

⎣
⎢⎡

1
1
1

1
−1
0 ⎦

⎥⎤

A second way to obtain [𝑇 ] is by computing 𝑇  on the standard basis of ℝ2.

𝑒1 = [1
0], 𝑒2 = [0

1]

𝑇 (𝑒1) =
⎣
⎢⎡

1
1
1⎦
⎥⎤, 𝑇 (𝑒2) =

⎣
⎢⎡

1
−1
0 ⎦

⎥⎤

Now, solving the problem: we’re rotating a vector by 90 degrees (sorry it’s hard to draw a graph in
here). So then

𝑇 (𝑒1) = [0
1] = 𝑒2

𝑇 (𝑒2) = [−1
0 ]

So

[𝑇 ] = [0
1

−1
0 ]
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Question 5: The maps 𝑇 : ℝ4 → ℝ3 and 𝑆 : ℝ3 → ℝ3 given below define linear transformations:

𝑇

⎝
⎜⎜
⎜⎜
⎛

⎣
⎢
⎢
⎡

𝑥1
𝑥2
𝑥3
𝑥4⎦

⎥
⎥
⎤

⎠
⎟⎟
⎟⎟
⎞

=
⎣
⎢
⎡

𝑥1 + 𝑥2
𝑥2 + 𝑥3
𝑥3 + 𝑥4⎦

⎥
⎤

, 𝑆
⎝
⎜⎛

⎣
⎢
⎡

𝑥1
𝑥2
𝑥3⎦

⎥
⎤

⎠
⎟⎞ =

⎣
⎢
⎡

𝑥1 + 𝑥3
𝑥1 + 𝑥2
𝑥2 + 𝑥3⎦

⎥
⎤

For this problem, a) compute the standard matrix 𝐶 = [𝑆∘𝑇 ], and b) give a formula for 𝑆𝑜𝑇 : ℝ4 →
ℝ3, like the transformations above.

Solution: With 𝑇 : ℝ𝑛 → ℝ𝑚, 𝑆 : ℝ𝑚 → ℝ𝑘 as linear transformations, then 𝑆 ∘ 𝑇 : ℝ𝑛 → ℝ𝑘 is a lin-
ear transformation and

[𝑆 ∘ 𝑇 ] = [𝑆] ⋅ [𝑇 ]

So now for part (a) we can calculate:

[𝑆 ∘ 𝑇 ] = [𝑆] ⋅ [𝑇 ]

[𝑆 ∘ 𝑇 ] =
⎣
⎢
⎡1

1
0

0
1
1

1
0
1⎦
⎥
⎤ ⋅

⎣
⎢
⎡1

0
0

1
1
0

0
1
1

0
0
1⎦
⎥
⎤

[𝑆 ∘ 𝑇 ] =
⎣
⎢⎡

1
1
0

1
2
1

1
1
2

1
0
1⎦
⎥⎤

And then for part (b), in which we’re doing 𝑆 ∘ 𝑇 : ℝ4 → ℝ3:

(𝑆 ∘ 𝑇 )

⎝
⎜⎜
⎜⎜
⎛

⎣
⎢
⎢
⎡

𝑥1
𝑥2
𝑥3
𝑥4⎦

⎥
⎥
⎤

⎠
⎟⎟
⎟⎟
⎞

= [𝑆 ∘ 𝑇 ]

⎣
⎢
⎢
⎡

𝑥1
𝑥2
𝑥3
𝑥4⎦

⎥
⎥
⎤

=
⎣
⎢⎡

1
1
0

1
2
1

1
1
2

1
0
1⎦
⎥⎤

⎣
⎢
⎢
⎡

𝑥1
𝑥2
𝑥3
𝑥4⎦

⎥
⎥
⎤

=

⎣
⎢⎢
⎡

𝑥1 + 𝑥2 + 𝑥3 + 𝑥4
𝑥1 + 2𝑥2 + 𝑥3
𝑥2 + 2𝑥3 + 𝑥4 ⎦

⎥⎥
⎤

Question 6: Let 𝐴 be a 5x8 matrix such that dim(null(𝐴)) = 3. Compute the dimension of null(𝐴).

Recall the rank theorem, which says that

# columns of A =

⎩
{
⎨
{
⎧rank(𝐴) + dim(null(𝐴))

dim(col(𝐴)) + dim(null(𝐴))
dim(row(𝐴)) + dim(null(𝐴))

(All of the things on the right are equivalent statements.)

Ok so in the context of Q6,

8 = dim(col(𝐴)) + 3 ⇒ dim(col(𝐴)) = 5

𝐴⏟
5×8

⟶⟶⟶⟶⟶⟶⟶⟶⟶⟶⟶⟶⟶
columns

become rows
𝐴𝑇⏟
8×5

# columns of 𝐴𝑇 = dim(row(𝐴𝑇 )) + dim()

uhhhh there’s more here which i missed
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Lecture 14: linear transformations (part 1)
Definition: let 𝑉 , 𝑊  be vector spaces over a field 𝔽.
A function 𝑇 : 𝑉 → 𝑊  is a linear transformaton if:
1. 𝑇 (𝑢 + 𝑣) = 𝑇(𝑢) + 𝑇(𝑣) (“open sums”)
2. 𝑇 (𝑘𝑢) = 𝑘𝑇 (𝑢) (“take out the scalars”)

Example: 𝑇 : 𝑃2(ℝ) → Mat2×2(ℝ), so 𝑇(𝑎 + 𝑏𝑥 + 𝑐𝑥2) → [𝑎
𝑐

𝑏
𝑑
]. Prove that 𝑇  is a linear transfor-

mation.

Solution:

1. “open sums”: given

{𝑢 = 𝑎 + 𝑏𝑥 + 𝑐𝑥2

𝑣 = 𝛼 + 𝛽𝑥 + 𝛾𝑥2 ∈ 𝑃2(ℝ)

so

𝑇 (𝑢 + 𝑣) = 𝑇((𝑎 + 𝛼) + (𝑏 + 𝛽)𝑥 + (𝑐 + 𝛾)𝑥2)

= [
𝑎 + 𝛼
𝑐 + 𝛾

𝑏 + 𝛽
0 ] = [𝑎

𝑐
𝑏
0] + [

𝛼
𝛾

𝛽
0]

= 𝑇(𝑎 + 𝑏𝑥 + 𝑐𝑥2) + 𝑇(𝛼 + 𝛽𝑥 + 𝛾𝑥2)

= 𝑇 (𝑢) + 𝑇(𝑣)

hence

𝑇 (𝑢 + 𝑣) = 𝑇(𝑢) + 𝑇(𝑣)✓

2. “take out scalars”

Let 𝑘 ∈ ℝ, 𝑢 = 𝑎 + 𝑏𝑥 + 𝑐𝑥2 ∈ 𝑃2(ℝ)

𝑇 (𝑘𝑢) = 𝑇(𝑘(𝑎 + 𝑏𝑥 + 𝑐𝑥2)) = 𝑇((𝑘𝑎) + (𝑘𝑏)𝑥 + (𝑘𝑐)𝑥2)

= [𝑘𝑎
𝑘𝑐

𝑘𝑏
0

] = 𝑘[𝑎
𝑐

𝑏
0] = 𝑘𝑇 (𝑢)✓

Hence, 𝑇  is a linear transformation.

Example: is 𝑇 : Mat𝑚×𝑛(ℝ) → Mat𝑛×𝑛(ℝ), 𝑇 (𝐴) = 𝐴𝑇  a linear transformation?

1. “open sums”

𝑇 (𝐴 + 𝐵) = (𝐴 + 𝐵)𝑇 = 𝐴𝑇 + 𝐵𝑇 = 𝑇(𝐴) + 𝑇(𝐵)
2. “take out scalars”

𝑇 (𝑘𝐴) = (𝑘𝐴)𝑇 = 𝑘𝐴𝑇 = 𝑘𝑇(𝐴)

So 𝑇  is a linear transformation.
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Example: We defime two vector spaces

𝐷 = {𝑓 : ℝ → ℝ | 𝑓 ′ exists}

𝐹 = {𝑓 : ℝ → ℝ | 𝑓 is a function}

We now define 𝐷 → 𝐹  as 𝐷(𝑓) = 𝑓 ′. Prove that 𝐷 is a linear transformstion. (This transformation is
called the differential operator.)

1. “open sums” Let 𝑓, 𝑔 ∈ 𝐷. Then

𝐷(𝑓 + 𝑔) = (𝑓 + 𝑔)′ = 𝑓 ′ + 𝑔′ = 𝐷(𝑓) + 𝐷(𝑔)

Yep, it open sums!
2. “take out the scalars” Let 𝑘 ∈ ℝ, 𝑓 ∈ 𝐷. Then

𝐷(𝑘𝑓) = (𝑘𝑓)′ = 𝑘𝑓 ′ = 𝑘𝐷(𝑓)

You can also take out the scalars!
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Properties of linear transformations
Let 𝑇 : 𝑉 → 𝑊  be a linear transformation.
1. 𝑇 (0𝑉 ) = 0𝑊
2. 𝑇 (𝑢 − 𝑣) = 𝑇(𝑢) − 𝑇(𝑣)
3. The action of 𝑇  on every vector in 𝑉  is completely determined by the action of 𝑇  on any basis 𝐵

of 𝑉 .
• If 𝐵 = {𝑣1, …, 𝑣𝑛}, then in order to kmow 𝑇 (𝑣), you only need to know 𝑇 (𝑣1), …, 𝑇 (𝑣𝑛)

Example: suppose 𝑇 : ℝ2 → ℙ2(ℝ) is a linear transformaton such that

𝑇([1
1]) = 2 − 3𝑥 + 𝑥2

𝑇([2
3]) = 1 − 𝑥2

Compute 𝑇([−1
2 ]) and 𝑇([𝑎

𝑏]).

1. Computing 𝑇([−1
2 ]):

Notice that 𝐵 = {[1
1], [

2
3]} is a basis of ℝ2 (which is the domain of 𝑇 ). Then we can do

[−1
2 ] = 𝑥[1

1] + 𝑦[2
3] ⇔ [1

1
2
3

−1
2 ] ⟶⟶⟶⟶⟶⟶⟶⟶⟶⟶⟶⟶⟶⟶

Gauss-Jordan
[1
0

0
1

−7
3 ] ⇒ {𝑥 = −7

𝑦 = 3

Now we can check that

[−1
2 ] = −7[1

1] + 3[2
3]

and that checks out so we’re all good! So now we can do this

𝑇([−1
2 ]) = 𝑇

⎝
⎜⎜
⎜⎜
⎛

−7[1
1]

⏟
𝑢

+ 3[2
3]

⏟
𝑣 ⎠

⎟⎟
⎟⎟
⎞

= 𝑇

⎝
⎜⎜
⎜⎜
⎛

−7[1
1]

⏟
𝑘𝑢 ⎠

⎟⎟
⎟⎟
⎞

+ 𝑇

⎝
⎜⎜
⎜⎜
⎛

3[2
3]

⏟
𝑘𝑣 ⎠

⎟⎟
⎟⎟
⎞

= −7𝑇([1
1]) + 3𝑇([2

3])

= −7(2 − 3𝑥 + 𝑥2) + 3(1 − 𝑥2) = −11 + 21𝑥 − 10𝑥2

2. Computing 𝑇([𝑎
𝑏])

Similarly,

[𝑎𝑏] = 𝑥[1
1] + 𝑦[2

3] ⇔ [1
1

2
3

𝑎
𝑏] ⇝ {𝑥 = 3𝑎 − 2𝑏

𝑦 = 𝑏 − 𝑎

Then

[𝑎𝑏] = (3𝑎 − 2𝑏)[1
1] + (𝑏 − 𝑎)[2

3]

so

𝑇([𝑎𝑏]) = 𝑇((3𝑎 − 2𝑏)[1
1] + (𝑏 − 𝑎)[2

3])

= (3𝑎 − 2𝑏)𝑇([1
1]) + (𝑏 − 𝑎)𝑇([2

3]) = (5𝑎 − 3𝑏) + (−9𝑎 + 6𝑏)𝑥 + (4𝑎 − 3𝑏)𝑥2
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Lecture 15: kernel, rank, and isomorphisms
Let 𝑇 : 𝑉 → 𝑊  be a linear transformation.

Definition of the kernel of 𝑇 :

ker(𝑇 ) = {𝑣 ∈ 𝑉 : 𝑇 (𝑣) = 0𝑤}

(Vectors in V that are mapped to zero in W)

Definition of the range of 𝑇 :

range(𝑇 ) = {𝑇 (𝑣) : 𝑣 ∈ 𝑉 }

(The image of the function 𝑇 )

Theorem: ker(𝑇 ) is a subspace of 𝑉

Definiton: the nullity of 𝑇  is defined as

nullity(𝑇 ) = dim(ker(𝑇 ))

Theorem: the range of 𝑇  is a subvector space of 𝑊 .

Definiton: the rank of 𝑇  is defined as

rank(𝑇 ) = dim(range(𝑇 ))

Theorem: Rank Theorem

rank(𝑇 ) + nullity(𝑇 ) = dim(𝑉 )

Theorem
For 𝑇 : ℝ𝑚 → ℝ𝑛 given by 𝑇 ( ̄𝑥) = 𝐴 ̄𝑥:
• range(𝑇 ) = col(𝐴)
• rank(𝑇 ) = rank(𝐴) = dim(col(𝐴))
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Example: given 𝐴 = [ 1
−1

2
3

0
1] and 𝑇 : ℝ3 → ℝ2 given by 𝑇([

𝑥
𝑦
𝑧
]) = 𝐴[

𝑥
𝑦
𝑧
] = [ 1

−1
2
3

0
1][

𝑥
𝑦
𝑧
], find…

1. ker(𝑇 )

ker(𝑇 ) = {[
𝑥
𝑦
𝑧
] ∈ ℝ3 : 𝑇([

𝑥
𝑦
𝑧
]) = [0

0]} ⇔ [ 1
−1

2
3

0
1][

𝑥
𝑦
𝑧
] = [0

0]

Solving the homogenous system:

[
𝑥
𝑦
𝑧
] = 𝑧

⎣
⎢
⎢
⎡−2

5

−1
5

1 ⎦
⎥
⎥
⎤

⇝ ker(𝑇 ) = span

⎝
⎜⎜
⎜⎜
⎛

⎣
⎢
⎢
⎡−2

5

−1
5

1 ⎦
⎥
⎥
⎤

⎠
⎟⎟
⎟⎟
⎞

2. nullity(𝑇 )

nullity(𝑇 ) = 1 because dim(ker(𝑇 )) = 1

3. range(𝑇 )

By definition,

range(𝑇 ) = {𝑇([
𝑥
𝑦
𝑧
]) = [

𝑥
𝑦
𝑧
] ∈ ℝ3}

So now we look at the condition that defines the range and work with that condition.

𝑇([
𝑥
𝑦
𝑧
]) = [ 1

−1
2
3

0
1][

𝑥
𝑦
𝑧
] = 𝑥[ 1

−1] + 𝑦[2
3] + 𝑧[0

1] = col(𝐴)

Ok so since this equals column space, now we can just work to find a basis for that:

[ 1
−1

2
3

0
1] → ⋯ →

⎣
⎢⎡

1

0

0

1

−2
5

−1
5⎦
⎥⎤

so

col(𝐴) = span([ 1
−1], [2

3])

4. rank(𝑇 )
rank(𝑇 ) = 2 because dim(range(𝑇 )) = 2
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Example: given 𝑇 : 𝑃2(ℝ) → 𝑃3(ℝ), 𝑇 (𝑝(𝑥)) = 𝑥2𝑝′(𝑥)…
0. Verify that this is a linear transformation
1. Find a basis for range(𝑇 ) and find rank(𝑇 )
2. Find a basis for ker(𝑇 ) and find nullity(𝑇 )

Solution:
• For part 1:

range(𝑇 ) = {𝑇 (𝑝(𝑥)) : 𝑝(𝑥) ∈ ℙ2(ℝ)}

𝑇 (𝑝(𝑥) = 𝑥2 ∗ 𝑝(𝑥) = 𝑥2(𝑎 + 𝑏𝑥 + 𝑐𝑥2)) = 𝑥2(𝑏 + 2𝑐𝑥) = 𝑏𝑥2 + 2𝑐𝑥3

so

range(𝑇 ) = span(𝑥2, 𝑥3)

and that means a basis for range(𝑇 ) is

𝐵 = {𝑥2, 𝑥3}

Finally,

rank(𝑇 ) = 2

(there are two linearly independent vectors in the basis)

• For part 2:

ker(𝑇 ) = {𝑝(𝑥) ∈ ℙ2(𝑥) : 𝑇 (𝑝(𝑥)) = 0}

𝑇 (𝑝(𝑥)) = 𝑥2 ∗ 𝑝′(𝑥) = 𝑏𝑥2 + 2𝑐𝑥3 = 0 + 0𝑥 + 0𝑥2 + 0𝑥3

Comparing the coefficients in the last two things above tells you that

{𝑏 = 0
2𝑐 = 0 ⇝ {𝑏 = 0

𝑐 = 0

so 𝑝(𝑥) = 𝑎 + 𝑏𝑥 + 𝑐𝑥2 is in ker(𝑇 ) if and only if 𝑏 = 0 and 𝑐 = 0. This means

𝑝(𝑥) = 𝑎

i.e., only constant polynomials are in the kernel of 𝑇 . And now we can say that

ker(𝑇 ) = span(1) = ℝ

and

nullity(𝑇 ) = 1
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Lecture 16: isomorphisms and matrices of transformation
Recall that a function 𝑓 : 𝐴 → 𝐵 is one-to-one if:
• For two inputs 𝑎 ≠ 𝑏, 𝑓(𝑎) ≠ 𝑓(𝑏)

‣ (for distinct inputs, there are distinct outputs)
• Or equivalently, 𝑓(𝑎) = 𝑓(𝑏) ⇒ 𝑎 = 𝑏

‣ (𝑎 = 𝑏 iff 𝑓(𝑎) = 𝑓(𝑏))

A function 𝑓 : 𝐴 → 𝐵 is onto if:
• {𝑓(𝑎) : 𝑎 ∈ 𝐴} = 𝐵

‣ (the image of 𝑓(𝑎) onto 𝐴 is 𝐵) [← check this]

Example: 𝑓 : ℝ → ℝ given by
1. 𝑓(𝑥) = 𝑥2

• Not one-to-one, because 𝑓(1) = 𝑓(−1)
• Not onto, because range(𝑓) ≠ ℝ

2. 𝑓(𝑥) = 𝑥 + 1
• One-to-one and onto
• In this case, 𝑓  is also a bijection

Definition of isomorphisms: Let 𝑉 , 𝑊  be vector spaces over the same field 𝔽 and 𝑇 : 𝑉 → 𝑊  be
a linear transformation. We say that 𝑇  is an isomorphism if 𝑇  is one-to-one and onto.

Theorem: Let 𝑇 : 𝑉 → 𝑊  be a linear transformation. Then:
1. 𝑇  is one-to-one if and only if ker(𝑇 ) = {0𝑊 }
2. 𝑇  is onto if and only if range(𝑇 ) = 𝑊

• or if and only if rank(𝑇 ) = dim(𝑊)
‣ (this is because rank(𝑇 ) = dim(range(𝑇 )))

3. 𝑇  is an isomorphism if and only if ker(𝑇 ) = {0} and rank(𝑇 ) = dim(𝑊)

Example: Determine if the given transformation is one-to-one, onto, or an isomorphism.

1. 𝑇 : 𝑃2(ℝ) → 𝑃2(ℝ), 𝑇 (𝑝(𝑥)) = 𝑝(0)

Solution:

a) Is 𝑇  one-to-one?

ker(𝑇 ) = {𝑝(𝑥) : 𝑇 (𝑝(𝑥)) = 0}

If 𝑝(𝑥) = 𝑎 + 𝑏𝑥 + 𝑐𝑥2, then 𝑝(0) = a = 0. This means that 𝑝(𝑥) ∈ ker(𝑇 ) iff 𝑝(𝑥) = 𝑏𝑥 + 𝑐𝑥2

So for example, 𝑝(𝑥) = 𝑥 + 𝑥2 satisfies 𝑝(0) = 0. This means that 𝑝(𝑥) ∈ ker(𝑇 ) ⇒ ker(𝑇 ) ≈ {0}.
This violates the first condition of the above theorem. Hence, 𝑇  is not one-to-one.

b) Is 𝑇  onto?

range(𝑇 ) = {𝑇 (𝑝(𝑥)) : 𝑝(𝑥) ∈ 𝑃2(ℝ)}

𝑝(𝑥) = 𝑎 + 𝑏𝑥 + 𝑐𝑥2 ⇒ 𝑇(𝑝(𝑥)) = 𝑝(0) = 𝑎 + 𝑏(0) + 𝑐(0)2 = 𝑎

Hence, range(𝑇 ) = span(1) ≠ 𝑃2(ℝ)). So 𝑇  is not onto.

c) Is 𝑇  an isomorphism?
Clearly not, since to be an ismomorphism a linear transformaion must be both one-to-one and onto…
and 𝑇  is neither.
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Example: 𝑇 : ℝ2 → 𝑃1(ℝ), 𝑇([𝑎
𝑏]) = 𝑎 + (𝑎 + 𝑏)𝑥

a) Is 𝑇  one-to-one?

ker(𝑇 ) = {[𝑎𝑏] ∈ ℝ2 : 𝑇([𝑎𝑏]) = 0 + 0𝑥}

𝑇([𝑎𝑏]) = 𝑎 + (𝑎 + 𝑏)𝑥 = 0 + 0𝑥

Comparing coefficents,

{𝑎 = 0
𝑎 + 𝑏 = 0 ⇒ {𝑎 = 0

𝑏 = 0 ⇒ ker(𝑇 ) = {[0
0]}

So 𝑇  is one-to-one. ✓

b) Is 𝑇  onto?
By the rank theorem,

dim(ker(𝑇 )) + dim(range(𝑇 )) = dim(ℝ2) = 2

0 + rank(𝑇 ) = 2

⇒ rank(𝑇 ) = 2 = dim(𝑃1(ℝ))

So 𝑇  is onto. ✓

c) Is 𝑇  an isomorphism?
Yes, because 𝑇  is both one-to-one and onto. ✓

In this case, we say that ℝ2 is isomorphic to 𝑃1(ℝ), and this relationship is written in the following
way:

ℝ2 ≅ 𝑃1(ℝ)

To be isomorphic means that “they look the same from a math perspecitve”.

Example: 𝑇 : ℝ4 → 𝑃4(ℝ), 𝑇
⎝
⎜⎛

⎣
⎢
⎡

𝑎
𝑏
𝑐
𝑑⎦
⎥
⎤

⎠
⎟⎞ = 𝑎 + 𝑏𝑥 + 𝑐𝑥2 + 𝑑𝑥3

• This is clearly one-to-one, since the only way to get the zero vector
• The image is only going to produce polynomials of degree 3, but 𝑃4(ℝ) includes polynomials of

degree 4, and you can never get a polynomial of degree 4 from 𝑇 .
• Therefore this transformation is one-to-one but not onto.

Also:

dim(ker(𝑇 )) + dim(range(𝑇 )) = dim(ℝ4)

0 + dim(range(𝑇 )) = 4

But dim(𝑃4(ℝ)) = 5, so

dim(range(𝑇 )) < dim(𝑃4(ℝ))

Lecture 16: isomorphisms and matrices of transformation
compiled on Wednesday, October 2, 2024

47/120
back to contents ↑



Matrices of linear transformations
Recall that for a linear transformation 𝑇 : ℝ𝑛 → ℝ𝑚, we can compute the standard matrix of 𝑇 :

[𝑇 ]𝐸𝑚←𝐸𝑛
= [𝑇 (𝑒1) … 𝑇(𝑒𝑛)]

We generalize for two vector spaces.

Theorem: Let 𝑇 : 𝑉 → 𝑊  be a linear transformation. 𝐵 is a basis for 𝑉 , and 𝐶 is a basis for 𝑊 . The
the matrix of 𝑇  with respect to 𝐵 and 𝐶 is

[𝑇 ]𝐶←𝐵 = [[𝑇(𝑣1)]𝐶 [𝑇(𝑣2)]𝐶 …[𝑇(𝑣𝑛)]𝐶]

𝐵 = {𝑣1, …, 𝑣𝑛}
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Lecture 17: coordinate vectors
Matrices of linear transformations, continued
Example: let 𝐷 : 𝑃3 → 𝑃2 be the differential operator, 𝐵 = {1, 𝑥, 𝑥2, 𝑥3}, and 𝐶 = {1, 𝑥, 𝑥2}.
a) compute [𝐷]𝐶←𝐵, and
b) use part (a) to compute 𝐷(5 − 𝑥 + 2𝑥3).

Solution:

For part (a):

[𝐷]𝐶←𝐵 = [[𝐷(1)]𝐶 [𝐷(𝑥)]𝐶 [𝐷(𝑥2)]𝐶 [𝐷(𝑥3)]𝐶]

𝐷(1) = 0 = 0 ∗ 1 + 0𝑥 + 0𝑥2 ⇝ [𝐷(1)]𝐶 =
⎣
⎢
⎡0

0
0⎦
⎥
⎤

𝐷(𝑥) = 1 = 1 ∗ 1 + 0𝑥 + 0𝑥2 ⇝ [𝐷(𝑥)]𝐶 =
⎣
⎢⎡

1
0
0⎦
⎥⎤

𝐷(𝑥2) = 2𝑥 = 0 ∗ 1 + 2𝑥 + 0𝑥2 ⇝ [𝐷(𝑥2)]
𝐶

=
⎣
⎢⎡

0
2
0⎦
⎥⎤

𝐷(𝑥3) = 3𝑥2 = 0 ∗ 1 + 0𝑥 + 3𝑥2 ⇝ [𝐷(𝑥3)]
𝐶

=
⎣
⎢
⎡0

0
3⎦
⎥
⎤

Hence,

[𝐷]𝐶←𝐵 =
⎣
⎢
⎡0

0
0

1
0
0

0
2
0

0
0
3⎦
⎥
⎤

Now for part (b):

𝑝 = 5 − 𝑥 + 2𝑥3

[𝑝]𝐵 =

⎣
⎢
⎢
⎡ 5

−1
0
2 ⎦

⎥
⎥
⎤

so

[𝐷(𝑝)]𝐶 =
⎣
⎢
⎡0

0
0

1
0
0

0
2
0

0
0
3⎦
⎥
⎤

⎣
⎢
⎢
⎡ 5

−1
0
2 ⎦

⎥
⎥
⎤

=
⎣
⎢⎡

−1
0
6 ⎦

⎥⎤

This is the coordinate of the derivative of the polynomial in the basis 𝐶 . So then

𝐷(𝑝) = −1 ∗ 1 + 0𝑥 + 6𝑥2 = −1 + 6𝑥2
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Matrices of compositions of transformations
If you have 𝑈 , 𝑉 , and 𝑊  bridged by transformations 𝑇  and 𝑆, you can skip the middle step and go
straight from 𝑈  to 𝑊  with the composite of 𝑆 and 𝑇 : (𝑆 ∘ 𝑇 )(𝑢)

Theorem: [𝑆∘𝑇 ] = [𝑆]𝐷←𝐶 [𝑇 ]𝐶←𝐵
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Example: 𝑇 : 𝑃1 → ℝ2 and 𝑆 : ℝ2 → ℝ2 are given by 𝑇 (𝑝(𝑥)) = [𝑝(0)

𝑝(1)
] and 𝑆([𝑎

𝑏]) = [𝑎−2𝑏
2𝑎−𝑏

].

The bases are 𝐵 = {1, 1 + 𝑥}, 𝐶 = {𝑒1, 𝑒2}, and 𝐷 = {[1
0], [

1
1]}, respectively.

a) Compute [𝑆∘𝑇 ], and
b) Compute (𝑆 ∘ 𝑇 )(2 + 𝑥) using (a).

Solution: For part (a):

[𝑆 ∘ 𝑇 ]𝐷←𝐵 = [𝑆]𝐷←𝐶 [𝑇 ]𝐶←𝐵

So first let’s find

[𝑇 ]𝐶←𝐵 = [[𝑇(1)]𝐶 [𝑇(1+𝑥)]𝐶]

𝑇 (1) = [1
1] = 1𝑒1 + 1𝑒2

𝑇 (1 + 𝑥) = [1
2] = 1𝑒1 + 2𝑒2

Hence

[𝑇 ]𝐶←𝐵 = [1
1

1
2]

Each column comes from the coefficients of 𝑒𝑛 in the preceding two lines.

Ok next let’s find

[𝑆]𝐷←𝐶 = [[𝑆(𝑒1)]𝐷 [𝑆(𝑒2)]𝐷]

𝑆(𝑒1) = 𝑆([1
0]) = [1

2]

[1
2] = −1[1

0] + 2[1
1]

𝑆(𝑒2) = 𝑆([0
1]) = [−2

−1] = −1[1
0] − 1[1

1]

Hence (putting the coefficients from above into the columns, like we did before)

[𝑆]𝐷←𝐶 = [−1
2

−1
−1]

Finally, to answer (a):

[𝑆 ∘ 𝑇 ]𝐷←𝐵 = [−1
2

−1
−1][1

1
1
2] = [−2

1
−3
0 ]

Alright now for part (b):

𝑝 = 2 + 𝑥 = 1(1) + 1(1 + 𝑥) ⇝ [𝑝]𝐵 = [1
1]

so

[𝑆 ∘ 𝑇 ]𝐷←𝐵[𝑝]𝐵 = [−2
1

−3
0 ][1

1] = [−5
1 ] = [(𝑆 ∘ 𝑇 )(𝑝)]𝐷

Lecture 17: coordinate vectors
compiled on Wednesday, October 2, 2024

51/120
back to contents ↑



𝐷 = {[1
0], [

1
1]}, so putting it back into standard basis:

(𝑆 ∘ 𝑇 )(𝑝) = −5[1
0] + 1[1

1] = [−4
1 ]

Change of basis in vector spaces
𝑉  vector space over 𝔽, 𝐵 = {𝑣1, …, 𝑣𝑛}, 𝐶 bases for 𝑉 .
Any vector 𝑣 ∈ 𝑉  can be written in terms of 𝐵 or 𝐶 .

Question: [𝑣]𝐶 ≈? [𝑣]𝐵?

Answer: By the change of basis matrix 𝑃𝐶←𝐵 = [𝐼]𝐶←𝐵, 𝐼 : 𝑉 → 𝑉  is the identity map, so 𝐼(𝑣) = 𝑣.

Example: 𝑉 = 𝑃2, 𝐵 = {1, 𝑥, 𝑥2}, 𝐶 = {1 + 𝑥, 𝑥 + 𝑥2, 1 + 𝑥2}. Find 𝑃𝐵←𝐶

Solution:

𝑃𝐵←𝐶 = [[1+𝑥]𝐵 [𝑥+𝑥2]𝐵 [1+𝑥2]𝐵]

𝑃𝐵←𝐶 =
⎣
⎢
⎡1

1
0

0
1
1

1
0
1⎦
⎥
⎤
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Lecture 18: determinants
Determinants are defined for (𝑛 × 𝑛) square matrices only and, in this course, they will be computed
using cofactor expansion along any row or any column.

Definition: Given a square matrix 𝐴, we define the
• (𝑖, 𝑗)-minor as det( ̃𝐴) where ̃𝐴 = remove row 𝑖 and column 𝑗 of 𝐴
• (𝑖, 𝑗)-cofactor as (−1)𝑖+𝑗 det( ̃𝐴)

Example: Given

𝐴 =
⎣
⎢⎡

1
3
0

−1
1
0

2
0
2⎦
⎥⎤

• the (2, 2)-minor is

det( ̃𝐴) = det([1
0

2
2]) = 1 ∗ 2 − 0 ∗ 2 = 2

• the (2, 2)-cofactor of 𝐴 is:

(−1)2+2 det( ̃𝐴) = 1 det([1
0

2
2]) = 1 ∗ 2 = 2

Example: Compute det(𝐴) where 𝐴 = [
1
3
0

−1
1
0

2
0
2
]

Solution 1: We will do cofactor expansion along row 2.

det(𝐴) = 3 ∗ (2, 1)-cofactor of 𝐴 + 1 ∗ (2, 2)-cofactor of 𝐴 + 0 ∗ (2, 3)-cofactor of 𝐴

det(𝐴) = 3 ∗ (−1)2+1 det([−1
0

2
2]) + 1 ∗ (−1)2+2 det([1

0
2
2]) + 0 ∗ (−1)2+3 det([−1

0
−1
0 ])

det(𝐴) = 3(−1)(−2) + 1(1)(2) + 0

det(𝐴) = 8

As you can see, the smartest way to go about doing cofactor expansion is to pick the row or column
with the most zeros, since every time there’s a zero, you don’t have to compute the determinant and
everything.

Solution 2: Now we’ll pick the row or column with the most zeros, so we’ll do cofactor expansions
along row 3.

det(𝐴) = 2 ∗ (3, 3)-cofactor of 𝐴

det(𝐴) = 2(−1)3+3 det([1
3

−1
1 ])

det(𝐴) = 2(1)(1 − (−3)) = 2 ∗ 4

det(𝐴) = 8
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Example: Compute det(𝐴) where 𝐴 =
⎣
⎢
⎡

1
0
0
0

4
−1
0
0

7
100
6
0

700
600
200
3 ⎦

⎥
⎤

Solution: This is an upper triangular matrix, so there are a bunch of zero entries. We can easily compute
the determinant using recursive cofactor expansion a long the first column:

det(𝐴) = (1)(−1)(6)(3) = 18

This turns out to just entail taking the product of the elements in the main diagonal (top left to bottom
right). Indeed, this holds for all upper and all lower triangular matrices:

det(𝐴) =
product of elements in main diagonal

for upper triangular matrices

Remark: det(𝐼3) = 1; in general, det(𝐼𝑛) = 1.

The determinant is a function det : Mat𝑛×𝑛(ℝ) → ℝ. We would like to study the properties of this
function.

Properties:
1. det(𝐴𝐵) = det(𝐴) det(𝐵)

• If det(𝐴) = 4 and det(𝐵) = −3, then det(𝐴𝐵) = (4)(−3) = −12
2. 𝐴 is invertible ⇔ det(𝐴) ≠ 0
3. If 𝐴 is invertible, then det(𝐴−1) = 1

det(𝐴)
• This is because 1 = det(𝐼𝑛) = det(𝐴𝐴−1) = det(𝐴) det(𝐴−1)

Example: is 𝐴 = [
1
3
0

−1
1
0

2
0
2
] invertible?

Solution: from the previous example, we know that det(𝐴) = 8 ≠ 0; ∴ 𝐴 is invertible

Example: Given det(𝐴) = 3, det(𝐵) = −1, compute det(𝐴−1𝐵2)

Solution:

det(𝐴−1𝐵2) = det(𝐴−1) det(𝐵2) = det(𝐴−1) det(𝐵) det(𝐵)

.

=
1
3
(−1)2 =

1
3

Lecture 18: determinants
compiled on Wednesday, October 2, 2024

54/120
back to contents ↑



Lecture 19: more on determinants, Cramer’s rule, eigenvalues
Note: eigenvalues will definitely not be on this upcoming exam (it was unclear whether Cramer’s rule
will be)

More on determinants
From last time…
1. If 𝐴 is a 𝑛 × 𝑛 (square) matrix, then det(𝐴) = |𝐴| is defined and computed using cofactor expan-

sions along any row or column
• |𝐴| looks like an absolute value, but that’s actually the shorthand notation for the determinant
• Pick the row/column with the most zeros because it’s easiest
• Also, for upper and lower triangular matrices, the determinant is just the product of the main

diagonal
2. Properties of determinants (properties 1-3 from last time; properties 4+ are new):

1. det(𝐴𝐵) = det(𝐴) det(𝐵)
2. A is invertible ⇔ det(𝐴) ≠ 0
3. If 𝐴 is invertible, then det(𝐴−1) = 1

det(𝐴)
4. det(𝐴𝑇 ) = det(𝐴)
5. If 𝐴 has a row or column of zeros, then det(𝐴) = 0
6. 𝐴 ⟶⟶⟶⟶⟶⟶⟶⟶

𝑅𝑖↔𝑅𝑗
𝐵 then det(𝐴) = − det(𝐵)

7. 𝐴 ⟶⟶⟶⟶
𝑘𝑅𝑖

𝐵 then det(𝐴) = 1
𝑘 det(𝐵)

8. 𝐴 ⟶⟶⟶⟶⟶⟶⟶⟶⟶⟶⟶⟶⟶⟶⟶
𝑅𝑖←𝑅𝑖+𝑘𝑅𝑗

𝐵 then det(𝐴) = det(𝐵)

Examples of the above properties:

For property 6:

|
0
1
1

2
1
3

3
−1
2

| =
𝑅1↔𝑅2 −|

1
0
1

1
2
3

−1
3
2

|

For property 7:

|
2
3
0

4
1
3

6
−1
4

| =
1
2𝑅1 1

1
2

|
1
3
0

2
1
3

3
−1
4

|

Example: Compute |
2
3
0

4
1
3

6
−1
4

|

Solution:

|
2
3
0

4
1
3

6
−1
4

| =
1
2𝑅1

prop 7
2|

1
3
0

2
1
3

3
−1
4

| =
𝑅2←𝑅2−3𝑅1

prop 8
2
⎣
⎢
⎡1

0
0

2
−5
3

3
−10
4 ⎦

⎥
⎤

oops I missed the rest of this

Example: Compute 

|
|
|
| 1

2
sin(2)
−2

−1
𝜋

sin(3)
2

2
𝑒
0

−4

3
𝑒2

1
6 |
|
|
|
.

Solution: det(above matrix) = 0 because the 4th row is just a multiple of the first
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Cramer’s rule
Let 𝐴 be an 𝑛 × 𝑛 invertible matrix and ⃗𝑏 ∈ ℝ𝑛. Then the system 𝐴 ⃗𝑥 = ⃗𝑏 has solution

𝑥𝑖 =
det(𝐴𝑖( ⃗𝑏))

det(𝐴)

where ⃗𝑥 = [
𝑥1

⋮
𝑥𝑛

] and 𝐴𝑖( ⃗𝑏) is the matrix resulting from 𝐴 by replacing column 𝑖 of 𝐴 by ⃗𝑏.

Cramer’s rule is useful for when you have a giant matrix but you only would like to know one or a
few of the solutions. (Otherwise, Gaussian/Gauss-Jordan elimination is usually less computationally
expensive.)

Example: Solve {𝑥1+2𝑥2=2
−𝑥1+4𝑥2=1 using Cramer’s rule.

Solution:

𝐴 = [ 1
−1

2
4],  det(𝐴) = 4 − (−2) = 6 ≠ 0

𝑥1 =
det(𝐴1( ⃗𝑏))

det(𝐴)
=

|21
2
4|

6
=

8 − 2
6

= 1

𝑥2 =
det(𝐴2( ⃗𝑏))

det(𝐴)
=

| 1
−1

2
1|

6
=

1 − (−2)
6

=
1
2

The adjoint matrix
Definition: Let 𝐴 be an 𝑛 × 𝑛 matrix. We define the adjoint matrix as

adj(𝐴) = [(𝑖, 𝑗)-cofactors of 𝐴]𝑇

which is also an 𝑛 × 𝑛 matrix.

Theroem: if 𝐴 is invertible, then 𝐴−1 = 1
det(𝐴) ∗ adj(𝐴)
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Example: Given 𝐴 = [ 1
−1

2
4], find adj(𝐴).

Solution:

adj(𝐴) = [
𝐶11

𝐶21

𝐶12

𝐶22
]

𝑇

where 𝐶𝑖𝑗 = (𝑖, 𝑗)-cofactor of 𝐴

𝐶11 = (−1)1+1|4| = 4

𝐶12 = (−1)1+2| − 1| = 1

𝐶21 = (−1)2+1|2| = −2

𝐶22 = (−1)2+2|1| = 1

then

adj(𝐴) = [ 4
−2

1
1]

𝑇

so

𝐴−1 =
1

| 1
−1

2
4|

[ 4
−2

1
1]

𝑇

=
1
6
[4
1

−2
1 ]

Eigenvalues
Motivation: compute det([1

2
−1
3 ] − 𝑥[1

0
0
1])

= det([1 − 𝑥
2

−1
3 − 𝑥]) = (1 − 𝑥)(3 − 𝑥) + 2 = 3 − 4𝑥 + 𝑥2 + 2 = 𝑥2 − 4𝑥 + 5

which is a polynomial with entries in ℝ.

What do the roots of the polynomial 𝑥2 − 4𝑥 + 5 tell us about the matrix 𝐴 = [1
2

−1
3 ]?
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Lecture 20: eigenvalues, eigenvectors, and similarity
Definition: eigenvalue and eigenvector

Given an 𝑛 × 𝑛 matrix 𝐴, 𝜆 ∈ ℝ and ̄𝑥 ∈ ℝ𝑛:
1. 𝜆 is an eigenvalue of 𝐴 if there exists a nonzero vector ̄𝑥 ∈ ℝ𝑛 such that 𝐴 ̄𝑥 = 𝜆 ̄𝑥

• i.e.
2. The vector ̄𝑥 above is called an eigenvector

Example: given 𝐴 = [1
3

3
1], 𝜆 = 4, ̄𝑥 = [1

1](≠ [0
0])

Then 𝜆 is an eigenvalue of 𝐴 and ̄𝑥 = [1
1] is an eigenvector corresponding to 𝜆 = 4 because

𝐴 ̄𝑥 = [1
3

3
1][1

2] = [4
4] = 4[1

1] = 𝜆 ̄𝑥

Finding eigenvalues and eigenvectors
How do we find the eigenvalues of a matrix and the corresponding eigenvectors?

Theorem: given an 𝑛 × 𝑛 matrix 𝐴:
1. The eigenvalues are zeros of the charactaristic polynomial, which is

char𝐴(𝑥) = det(𝐴 − 𝜆𝐼𝑛)
1. For an eigenvalue 𝜆, the eigenvectors corresponding to 𝜆 are the nonzero vectors in the subspace 

𝐸𝜆 of ℝ𝑛 (which is called the eigenspace corresponding to 𝜆):

𝐸𝜆 = null(𝐴 − 𝜆𝐼𝑛)
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Example: given 𝐴 = [3
1

1
3]…

The eigenvalues are

char𝐴(𝑥) = |[3
1

1
3] − 𝑥[1

0
0
1]| = |[3 − 𝑥

1
1

3 − 𝑥]| = (3 − 𝑥)2 − 1

= 𝑥2 − 6𝑥 + 9 − 1 = 𝑥2 − 6𝑥 + 8

= (𝑥 − 4)(𝑥 − 2)

So the eigenvalues are 𝜆 = 4 and 𝜆 = 2

Now to find the eigenvectors!

For 𝜆 = 4:

𝐴 − 𝜆𝐼2 = [3
1

1
3] − 4[1

0
0
1] = [−1

1
1

−2]

…now take the null space of that…

null(𝐴 − 𝜆𝐼𝑛) = [−1
0

1
0]

so

−𝑥 + 𝑦 = 0 ⇝ 𝑦 = 𝑥 ⇝ [𝑥𝑦] = [𝑥𝑥] = 𝑥[1
1]

𝐸𝜆=4 = span([1
1])

For 𝜆 = 2:

𝐴 = 2𝐼2 = [3
1

1
3] − 2[1

0
0
1] = [1

1
1
1] ⇝ [1

0
1
0]

𝑥 + 𝑦 = 0 ⇝ 𝑦 = −𝑥 ⇝ [𝑥𝑦] = [ 𝑥
−𝑥], 𝑥[ 1

−1]

𝐸𝜆=2 = span([ 1
−1])

Similarity and diagonalization

Similarity
Definition: Two matrices 𝐴 and 𝐵 are called similar (notated as 𝐴~𝐵) if there exists an invertible
matrix 𝑃  such that 𝐵 = 𝑃−1𝐴𝑃 .

Example: Prove that 𝐴 = [3
1

1
3] is similar to 𝐵 = [4

0
0
2].

Take

𝑃 = [1
1

1
−1]
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Diagonalization
Definition: A matrix 𝐴 is diagonalizable is 𝐴~𝐷 where 𝐷 is a diagonal matrix.

Note: Similarity is defined for any two matrices 𝐴 and 𝐵 (no matter the form), while diagonalization
means 𝐴~𝐷 where 𝐷 is diagonal (so it’s like diagonalization is a special case of similarity, it seems
like?)

Example: Diagonalize 𝐴 = [1
3

2
4], 𝐵 = [1

0
−1
1 ]

𝑃−1𝐴𝑃 = [1
0

1
1][1

3
2
4][1

0
−1
1 ] = [4

3
2
1]

This isn’t diagonal, but it is similar (I think?).

Theorem: Given that 𝐴~𝐵,
1. det(𝐴) = det(𝐵)
2. char𝐴(𝑥) = char𝐵(𝑥)
3. 𝐴 is invertible ⇔ 𝐵 is invertible
4. 𝐴 and 𝐵 have the same eigenvalues

• 𝐴 and 𝐵 do not necessarily have the same eigenvectors (! check about this)

It’s important to remember that if 𝐴 and 𝐵 have the same eigenvalues and eigenvectors, they’re nei-
ther necessarily similar nor equal — i.e., the above criteria are only one-way definitions. (This could
be an exam question!)

Also:
• 𝐴 is invertible ⇔ 0 is not an eigenvalue

Note: Similarity is an “equivalence relation”: you can pick a representative form each equivalence class
(group of matrices that are similar), and when possible we’ll pick diagonal matrices. But not all classes
necessarily have diagonal matrices, and for those classes, the next representatives are Jordan blocks
(but those aren’t covered in this class)

So when can we pick a diagonal matrix as a representative?

Theorem: A matrix 𝐴 is diagonalizable if and only if the algebraic multiplicity of 𝜆 = the geometric
multiplicity of 𝜆 for all eigenvalues 𝜆 of 𝐴.
• The algebraic multplicity of 𝜆 is the maximum power of 𝑥 − 𝜆 that divides char𝐴(𝑥)
• The geometric multiplicity of 𝜆 is dim(𝐸𝜆)
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Example: given 𝐴 = [3
1

1
3], char𝐴(𝑥) = (𝑥 − 4)(𝑥 − 2)

Also, we already computed that

𝜆 = 4 → 𝐸𝜆=4 = span([1
1])

𝜆 = 1 → 𝐸𝜆=1 = span([ 1
−1])

𝜆 algebraic multiplicity geometric multiplicity

4 1 1

2 1 1

We notice that the algebraic multiplicity = the geometric multiplicity for all 𝜆. Hence 𝐴 is diagonal-
izable

𝐴~[4
0

0
1] and 𝑃 = [1

1
1

−1]

Exam 2 review lecture
List of topics
• § 6.1: vector spaces and subspaces
• § 6.2: linear independence, bases, and dimension
• § 6.3: change of basis matrices 𝑃𝐶←𝐵
• § 6.4: linear transformations
• § 6.5: ker(𝑇 ), range(𝑇 ), nullity(𝑇 ), rank(𝑇 )
• § 6.6: matrix of a linear transformation [𝑇 ]𝐶←𝐵
• § 4.2: determinants (cofactor expansion, properties of determinants, adjoint matrices, Cramer’s rule,

computing determinants using REF)
• No eigenvalues or eigenvectors!

Problem 1: Which of the following is a subspace of Mat2×2(ℝ)?

1. 𝑊 = {𝐴 ∈ Mat2×2(ℝ) : det(𝐴) = 1}

→ No, because [0
0

0
0] ∉ 𝑊

2. 𝑊 = {𝐴 ∈ Mat2×2(ℝ) : det(𝐴) ≥ 0}

→ No, because 𝐴 = [1
1

−1
1 ] ∈ 𝑊  and 𝐵 = [0

0
3
0] ∈ 𝑊  but 𝐴 + 𝐵 = [1

1
2
1] ∉ 𝑊

3. 𝑊 = {[𝑎
0

0
𝑏] : 𝑎, 𝑏 ∈ ℝ}

→ Yes, because [𝑎
0

0
𝑏] = 𝑎[1

0
0
0] + 𝑏[0

0
0
1] so 𝑊 = span([1

0
0
0], [

0
0

0
1])

4. 𝑊 = {[𝑎
𝑏

𝑏
2𝑎

] : 𝑎, 𝑏 ∈ ℝ}

→ Yes, because [𝑎
𝑏

𝑏
2𝑎

] = 𝑎[1
0

0
2] + 𝑏[0

1
1
0] so 𝑊 = span([1

0
0
2], [

0
1

1
0])
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Problem 2: Which of the following statements is false?
1. Any set with 6 linearly independnet matrices of Mat3×2(ℝ) is a basis of Mat3×2(ℝ)

→ True, because dim(Mat3×2(ℝ) = 3 ∗ 2 = 6): the dimension of the vector space Mat3×2(ℝ) is 6, so
any set of 6 linearly independent matrices will form a basis

2. 𝑃3 can be spanned by 5 vectors

→ True, because they don’t need to be linearly independent
(For example, 𝑃3 = span(1, 𝑥, 𝑥2, 𝑥3, 1 + 𝑥))

3. Any set with 3 vectors in ℝ3 is linearly independent

→ False, because not all vectors in ℝ3 are necessarily linearly independent: for example, the vectors

in the set {[
1
1
1
], [

2
2
2
], [

3
3
3
]} are not linearly independent.

4. A basis of 𝑃3 can’t have more than 3 linearly independent vectors

→ False, because dim(𝑃3) = 4

5. There exists a basis of Mat2×2(ℝ) with 6 vectors.

→ False, because dim(Mat3×2(ℝ)) = 4 (it’s always exactly 4)

Problem 3: Let 𝑇 : ℝ2 → 𝑃2(ℝ) be a linear transformation such that 𝑇([−1
1 ]) = 2𝑥 and 𝑇([2

1]) =
1 − 𝑥. Compute 𝑇([2

3])

Represent [2
3] as a combination of [−1

1 ] and [2
1]:

[2
3] = 𝑎[−1

1 ] + 𝑏[2
1] ⇝ [−1

1
2
1

2
3] ⟶⟶⟶⟶⟶⟶

RREF

⎣
⎢⎡

1

0

0

1

4
3
5
3⎦
⎥⎤ ⇝

⎩{
⎨
{⎧𝑎 = 4

3

𝑏 = 5
3

So we’ll have 𝑇([2
3]) = 4

3𝑇([−1
1 ]) + 5

3𝑇([2
1]), so then:

𝑇([2
3]) =

4
3
(2𝑥) +

5
3
(1 − 𝑥) =

8
3
𝑥 +

5
3

−
5
3
𝑥

𝑇([2
3]) = 𝑥 +

5
3

The general background for this is that if you know the transformations of the vectors that form a
basis for a domain, you can compute the transformation for any other vector in that domain (as it can
be expressed as a linear combination of those basis vectors).
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Problem 4: Let 𝑇 : Mat2×2(ℝ) → Mat2×2(ℝ) be defined by 𝑇 (𝐴) = 𝐴 + 𝐴𝑇 .

1. Is 𝐴 = [0
1

−1
0 ] ∈ ker(𝑇 )?

To check if the matrix is in the kernel, see if you get the 0 matrix from the transformation:

𝑇 (𝐴) = 𝑇([0
1

−1
0 ]) = [0

1
−1
0 ] + [0

1
−1
0 ]

𝑇
= [0

1
−1
0 ] + [ 0

−1
1
0] = [0

0
0
0]

So 𝐴 is in the kernel.

2. Find a basis for ker(𝑇 ) and specify nullity(𝑇 )

𝐴 is in ker(𝑇 ) if and only if 𝐴 + 𝐴𝑇 = [0
0

0
0].

If 𝐴 = [𝑎
𝑐

𝑏
𝑑
], then

𝐴 + 𝐴𝑇 = [𝑎
𝑐

𝑏
𝑑
] + [𝑎𝑏

𝑐
𝑑] = [ 2𝑎

𝑐 + 𝑏
𝑏 + 𝑐
2𝑑

]

Set that equal to zero to find the basis for the kernel

⇝
⎩{
⎨
{⎧2𝑎 = 0

𝑏 + 𝑐 = 0
2𝑑 = 0

→
⎩{
⎨
{⎧𝑎 = 0

𝑏 = −𝑐
𝑑 = 0

So a basis for the kernel is

span([ 0
−1

1
0])

3. Find a basis for range(𝑇 ) and specify rank(𝑇 )
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Lecture 22: more on diagonalization and complex eigenvalues
Recall that:

1. 𝐴, 𝐵 ∈ Mat(𝑛 × 𝑛)(ℝ) are similar if 𝐵 = 𝑃−1𝐴𝑃  for some 𝑃 . Similarity creates a partition of
Mat𝑛×𝑛(ℝ).

Example: Are 𝐴 = [1
2

2
1] and 𝐵 = [2

1
1
2] similar?

det(𝐴) = 1 − 4 = −3

det(𝐵) = 4 − 1 = 3

So 𝐴 and 𝐵 cannot be similar.

Note: remember that if matrices 𝐴 and 𝐵 have different determinants, they can’t be similar, but if they
have the same determinant, they’re not necessarily similar (so it works one way but not the other)

2. 𝐴 is diagonalizable if 𝐴~𝐷 where 𝐷 is diagonal.

Theorem: A is diagonalizable ⇔ for each eiganvalue 𝜆 of 𝐴

If 𝐴 is diagonalizable and has 𝜆1, …, 𝜆𝑚 eigenvalues (they may be repeated) with corresponding eigen-
vectors 𝑣1, …, 𝑣𝑛

𝐴 =

⎣
⎢⎢
⎡ |

𝑣1

|

|
𝑣2

|

 
…
 

|
𝑣𝑛

| ⎦
⎥⎥
⎤

−1

⏟⏟⏟⏟⏟⏟⏟
𝑃−1

⎣
⎢⎡

𝜆1 
 

 
…
 

 
 

𝜆𝑛⎦
⎥⎤

⏟⏟⏟⏟⏟
𝐷

⎣
⎢⎢
⎡ |

𝑣1

|

|
𝑣2

|

 
…
 

|
𝑣𝑛

| ⎦
⎥⎥
⎤

⏟⏟⏟⏟⏟⏟⏟
𝑃

Theorem: {𝑣1, 𝑣2, …, 𝑣𝑛} as shown above is a basis of ℝ𝑛 consisting of eigenvectors.

Corollary 1: 𝐴 is diagonalizable ⇔ 𝐴 has 𝑛 distinct eigenvectors.

Corollary 2: For 𝑇 : ℝ𝑛 → ℝ𝑛 given by 𝑇 ( ̄𝑥) = 𝐴 ̄𝑥, if 𝐴 is diagonalizable, then there exists a basis 
𝐵 of ℝ𝑛 such that [𝑇 ]𝐵←𝐵 ≔ [𝑇 ]𝐵 is a diagonal matrix. Moreover, 𝐵 = columns of 𝑃 .

Note: this example is, according to the professor, always a hard exam question

Example: Let 𝑇 : ℝ2 → ℝ2 be given by 𝑇([𝑥
𝑦]) = [1

3
3

−1]⏟
𝐴

[𝑥
𝑦]. Find a basis 𝐵 (if possible) such that 

[𝑇 ]𝐵 is diagonal.

Solution: We must determine if 𝐴 is diagonalizable.

char𝐴(𝑥) = |𝐴 − 𝑥𝐼2| = |1 − 𝑥
3

3
−1 − 𝑥| = −(1 − 𝑥)(1 + 𝑥) = −3 = −𝑥2 − 2

−(𝑥2 + 2) ≠ 0 for 𝑥 ∈ ℝ

Hence 𝐴 is not diagonalizable, so there is no basis 𝐵 such that [𝑇 ]𝐵 is a diagonal matrix.
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But now what happens to matrices 𝐴 with complex eigenvalues?

Theorem: Assume 𝐴 is a 2 × 2 matrix over ℝ and it has a complex eigenvalue 𝜆 = 𝑎 + 𝑏𝑖 ∈ ℂ with
corresponding eigenvector 𝑥 = [𝑥1

𝑥2
] ∈ ℂ2. Then

1. 𝜆̄ = 𝑎 − 𝑏𝑖 is the second eigenvalue of 𝐴 with corresponding eigenvector ̄𝑥 = [ ̄𝑥1

̄𝑥2
]

2. A is similar to a scalar-rotation matrix.

𝐴 = 𝑃−1 [𝑟
0

0
𝑟]⏟

scaling matrix by
𝑟= |𝜆| =

√
𝑎2+𝑏2

[
cos(𝜃)
sin(𝜃)

− sin(𝜃)
cos(𝜃)

]
⏟⏟⏟⏟⏟⏟⏟⏟⏟

rotation by 𝜃
counterclockwise

𝜃= arg(𝜆)

𝑃

Moreover,

𝑃 = [Re [𝑥1
𝑥2

] Im [𝑥1
𝑥2

]]

and after simplification

[𝑟
0

0
𝑟][

cos(𝜃)
sin(𝜃)

− sin(𝜃)
cos(𝜃)

]
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Lecture 23: orthogonality and orthogonal complements
The dot product

Definition: for 𝑢 = [
𝑢1

⋮
𝑢𝑛

], 𝑣 = [
𝑣1

⋮
𝑣𝑛

] ∈ ℝ𝑛, the dot product or innerproduct is defined as

𝑢 ⋅ 𝑣 = 𝑢𝑇 ⋅ 𝑣 = 𝑢1𝑣1 + 𝑢2𝑣2 + … + 𝑢𝑛𝑣𝑛

Example: Given 𝑢 = [
1

−1
2

], 𝑣 = [
−1
2
3

], then 𝑢 ⋅ 𝑣 = (1)(−1) + (−1)(2) + (2)(3) = 3

Properties: For all 𝑢, 𝑣, 𝑤, ∈ ℝ𝑛 and 𝑐 ∈ ℝ:
1. 𝑢 ⋅ 𝑣 = 𝑣 ⋅ 𝑢 (commutativity)
2. 𝑐𝑈 ⋅ 𝑣 = 𝑢 ⋅ 𝑐𝑉 = 𝑐(𝑢 ⋅ 𝑣)
3. (𝑢 + 𝑣) ⋅ 𝑤 = 𝑤 ⋅ 𝑢 + 𝑤 ⋅ 𝑣 (distributivity)
4. 𝑢 ⋅ 𝑢 ≥ 0 (non-negativity)
5. 𝑢 ⋅ 𝑢 = 0 ⇔ 𝑢 = ⃗0

Lengths/norms

Definition: The length or norm of 𝑢 = [
𝑢1

⋮
𝑢𝑛

] ∈ ℝ𝑛 is defined as:

‖𝑢‖ =
√

𝑢 ⋅ 𝑢 = √𝑢2
1 + … + 𝑢2

𝑛

Example: Given 𝑢 = [𝑎
𝑏] ∈ ℝ2, ‖𝑢‖ =

√
𝑎2 + 𝑏2. In a way, we’re using the dot product to generalize

the Pythagorean theorem.

Definiton: A vector 𝑢 ∈ ℝ𝑛 such that ‖𝑢‖ = 1 is called a unit vector.

In ℝ2, all unit vectors are on the circle with radius 1, in ℝ3, all unit vectors are on the sphere with
radius 1, etc.

Any vector can be converted to a unit vector by just stretching or shrinking it.

Theorem: For any 𝑢 ∈ ℝ𝑛, 𝑢 ≠ 0, the vector 1
‖𝑢‖ ⋅ 𝑢 is a unit vector in the same direction of 𝑢.

Example: Find a unit vector in the same direction of 𝑢 = [
1

−1
1

] ∈ ℝ3.

Solution: ‖𝑢‖ = √12 + (−1)2 + 12 =
√

3, so a unit vector in the same direction as 𝑢 is

1
‖𝑢‖

𝑢 =
1

√
3⎣
⎢⎡

1
−1
1 ⎦

⎥⎤ =

⎣
⎢
⎢
⎢
⎢
⎡

1√
3

− 1√
3

1√
3 ⎦

⎥
⎥
⎥
⎥
⎤
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Distance
Definition: The distance between 𝑢, 𝑣, ∈ ℝ𝑛 is defined as

dist(𝑢, 𝑣) = ‖𝑢 − 𝑣‖

Example: Given 𝑢 = [
1
3

−1
], 𝑣 = [

0
−1
−1

], then

dist(𝑢, 𝑣) = ‖𝑢 − 𝑣‖ = ‖
⎣
⎢⎡

1
3

−1⎦
⎥⎤ −

⎣
⎢⎡

0
−1
−1⎦

⎥⎤‖ = ‖
⎣
⎢⎡

1
4
0⎦
⎥⎤‖ =

√
17

Properties:
1. dist(𝑢, 𝑣) = dist(𝑣, 𝑢)
2. dist(𝑢, 𝑣) ≥ 0 and dist(𝑢, 𝑣) = 0 ⇔ 𝑢 = 𝑣
3. dist(𝑢, 𝑣) ≤ dist(𝑢, 𝑤) + dist(𝑤, 𝑣) (triangle inequality)

Orthogonality
Definition: The vectors 𝑢, 𝑣 ∈ ℝ𝑛 are orthogonal or perpendicular if 𝑢 ⋅ 𝑣 = 0 (so equivalently, if 
‖𝑢‖‖𝑣‖ cos 𝜃 = 0)

The notation we use is 𝑢 ⟂ 𝑣

Note: 𝑢 ⟂ 𝑣 for all vectors 𝑣 ∈ ℝ𝑛 if and only if 𝑢 = ⃗0.

Example: 𝑢 = [
3
1
1
], 𝑣 = [

−1
2
1

] ⇝ 𝑢 ⋅ 𝑣 = 3(−1) + 1(2) + 1(1) = 0, so 𝑢 ⟂ 𝑣.

Orthogonal sets
Definiton: a set of vectors {𝑣1, …, 𝑣𝑘} ∈ ℝ𝑛 is an orthogonal set if 𝑣𝑖 ⟂ 𝑣𝑗 for all 𝑖 ≠ 𝑗.

Example:

{[
1
0
0
], [

0
1
0
], [

0
0
1
]} is an orthogonal set in ℝ3.

⎩{
⎨
{⎧

[
3
1
1
], [

−1
2
1

],
⎣
⎢
⎡

−1
2

−2
7
2 ⎦

⎥
⎤

⎭}
⎬
}⎫

 is an orthogonal set in ℝ3.

{[
0
0
0
], [

3
1
1
], [

−1
2
1

]} is an orthogonal set in ℝ3. (But it’s not a basis, because the zero vector is in there).

It turns out that every time you have a set of three nonzero orthogonal vectors in ℝ3, they’re linearly
independent and form a basis.
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Orthogonal bases
Theorem: Given 𝐵 = {𝑢1, …, 𝑢𝑘}, an orthogonal set of nonzero vectors in ℝ𝑛, then 𝐵 is linearly in-
dependent, so 𝐵 is a basis for 𝑊 = span(𝑢1, …, 𝑢𝑘). The basis 𝐵 is called an orthogonal basis for 𝑊 .
Moreover, if in addition, ‖𝑢𝑖‖ = 1, then 𝐵 is called an orthonormal basis for 𝑊 .

For example, {𝑒1, 𝑒2, 𝑒3} is an orthonormal basis of ℝ3. We can convert any orthogonal basis into an
orthonormal basis by doing the rescaling the vectors:

Example: 
⎩{
⎨
{⎧

𝑢 = [
3
1
1
], 𝑣 = [

−1
2
1

], 𝑤 =
⎣
⎢
⎡

−1
2

−2
7
2 ⎦

⎥
⎤

⎭}
⎬
}⎫

 is an orthogonal basis of ℝ3, but it’s not an orthonor-

mal basis, since ‖𝑢‖ =
√

9 + 1 + 1 =
√

11 ≠ 1, so at least one of its vectors doesn’t have a length of 1.

However,

{
1

‖𝑢‖
𝑢,

1
‖𝑣‖

𝑣,
1

‖𝑤‖
𝑤} =

⎩{
{⎨
{{
⎧

1
√

71⎣
⎢⎡

3
1
1⎦
⎥⎤,

1
√

6⎣
⎢⎡

−1
2
1 ⎦

⎥⎤,
1

√66
4 ⎣

⎢
⎢
⎡−1

2
−2
7
2 ⎦

⎥
⎥
⎤

⎭}
}⎬
}}
⎫

is an orthonormal basis.
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Lecture 24: orthogonal complements and projections
Orthogonal complements
Definiton: Let 𝑊 ≤ ℝ𝑛 be a subspace. The orthogonal complement of 𝑊  is

𝑊⟂ = {𝑥 ∈ ℝ𝑛 : 𝑤 ⋅ 𝑥 = 0 for all 𝑤 ∈ 𝑊}

Example: Given a plane 𝑊  in ℝ3 through the origin, 𝑊⟂ is a line in ℝ3 through the origin.

Algebraically, you can assume 𝑊 = {[
𝑥
𝑦
𝑧
] ∈ ℝ3 : 𝑥 + 𝑦 − 3𝑧 = 0}. Then you can do

0 = [
𝑥
𝑦
𝑧
]

𝑇

⋅
⎣
⎢⎡

1
1

−3⎦
⎥⎤ = [𝑥 𝑦 𝑧] ⋅

⎣
⎢⎡

1
1

−3⎦
⎥⎤ = 𝑥 + 𝑦 − 3𝑧

This shows that 𝑊⟂ = span([
1
1

−3
]), a line in ℝ3.

Theorem: 𝑊⟂ is a subspace of ℝ𝑛, and dim(𝑊) + dim(𝑊⟂) = dim(ℝ𝑛) = 𝑛.

Theorem: For any 𝑚 × 𝑛 matrix 𝐴:
1. (null(𝐴))⟂ = row(𝐴) ⊆ ℝ𝑛

2. (col(𝐴))⟂ = null(𝐴𝑇 ) ⊆ ℝ𝑚

Insert here: the four fundamental subspaces

Example: Let 𝑊 = span([
1

−1
0

], [
1
1
1
]) ⊆ ℝ3. Find a basis of 𝑊⟂.

Solution: Let 𝐴 = [
1

−1
0

1
1
1
]. Observe that 𝑊 = col(𝐴). So in order to compute a basis for 𝑊⟂, we need

to compute a basis for (col(𝐴))⟂ = null(𝐴𝑇 ) ⊆ ℝ3.

Now,

𝐴𝑇 = [1
1

−1
1

0
1] ⟶⟶⟶⟶⟶⟶⟶⟶⟶⟶⟶⟶⟶⟶

𝑅2←𝑅2−𝑅1
[1
0

−1
2

0
1] → {

𝑥 − 𝑦 = 0
2𝑦 + 𝑧 = 0 ⇒ {

𝑥 = 𝑦
𝑦 = −1

2𝑧

[
𝑥
𝑦
𝑧
] =

⎣
⎢
⎢
⎡−1

2𝑧

−1
2𝑧
𝑧 ⎦

⎥
⎥
⎤

= 𝑧

⎣
⎢
⎢
⎡−1

2

−1
2

1 ⎦
⎥
⎥
⎤

⇒ null(𝐴𝑇 ) = span

⎝
⎜⎜
⎜⎜
⎛

⎣
⎢
⎢
⎡−1

2

−1
2

1 ⎦
⎥
⎥
⎤

⎠
⎟⎟
⎟⎟
⎞

= span
⎝
⎜⎛

⎣
⎢⎡

−1
−1
2 ⎦

⎥⎤

⎠
⎟⎞

Hence 𝑊⟂ = span([
−1
−1
2

]), and a basis is 𝐵 = {[
−1
−1
2

]}.
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Orthogonal projections
Theorem: The orthogonal projection of 𝑉 ∈ ℝ𝑛 onto 𝑢 ∈ ℝ𝑛, 𝑢 ≠ 0, is

proj𝑢(𝑣) =
𝑢 ⋅ 𝑣
‖𝑢‖2 ∗ 𝑢

Moreover,

𝑉 = proj𝑢(𝑣)⏟
vector parallel
to u which is in

L = span(u)

+ perp𝑢(𝑣)⏟
vector orthogonal
to u which is in

L^perp

A formula for perp𝑢(𝑣) is

perp𝑢(𝑣) = 𝑣 − proj𝑢(𝑣)

The distance from 𝑉  to 𝐿 is ‖perp𝑢(𝑣)‖

Example: Let 𝑢 = [
1

−1
2

], 𝑣 = [
0

−1
1

]. Find the distance from 𝑉  to 𝐿 = span(𝑢).

Solution: First we compute proj𝑢(𝑣):

proj𝑢(𝑣) =
[

1
−1
2

] ⋅ [
0

−1
1

]

‖[
1

−1
2

]‖
2

⎣
⎢⎡

1
−1
2 ⎦

⎥⎤ =
3

(1)2 + (−1)2 + (2)2
⎣
⎢⎡

1
−1
2 ⎦

⎥⎤ =
1
2
⎣
⎢⎡

1
−1
2 ⎦

⎥⎤

Next, we compute perp𝑢(𝑣):

perp𝑢(𝑣) = 𝑉 − proj𝑢(𝑣) =
⎣
⎢⎡

0
−1
1 ⎦

⎥⎤ −
1
2
⎣
⎢⎡

1
−1
2 ⎦

⎥⎤ =

⎣
⎢
⎢
⎡−1

2

−1
2

0 ⎦
⎥
⎥
⎤

Last, we compute ‖perp𝑢(𝑣)‖:

‖perp𝑢(𝑣)‖ =

‖
‖
‖
‖

⎣
⎢
⎢
⎡−1

2

−1
2

0 ⎦
⎥
⎥
⎤

‖
‖
‖
‖

= √(−
1
2
)

2

+ (−
1
2
)

2

+ 02 = √1
2

=
1

√
2

This is the distance from 𝑉  to 𝐿.
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The orthogonal decomposition theorem
! He said “mark this topic as ‘I need to master it for the final’” so…

Theorem: Let 𝑊  be a subspace of ℝ𝑛 with an orthogonal basis 𝐵 = {𝑢1, …, 𝑢𝑘}. For every 𝑉 ∈ ℝ𝑛,
the orthogonal projection of 𝑉  onto 𝑊  is

proj𝑊 (𝑉 ) = proj𝑢1
(𝑉 ) + … + proj𝑢𝑘

(𝑉 )

The orthogonal complement of 𝑉  to 𝑊  is defined as

perp𝑊 (𝑉 ) = 𝑉 − proj𝑊 (𝑉 )

The distance from 𝑉  to 𝑊  is

dist(𝑉 , 𝑊) = ‖perp𝑊 (𝑉 )‖

Also, the vector 𝑉  can be written as

𝑉 = proj𝑊 (𝑉 ) + perp𝑊 (𝑉 )

and this is called an orthogonal decomposition.

(This is pretty visual, so it’s probably good to look at some diagrams as well)
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Example: Let 𝑊 = span([
1
1
0
], [

−1
1
1

]) ⊆ ℝ3 and 𝑉 = [
3

−1
2

] ∈ ℝ3. Find proj𝑊 (𝑉 ) and perp𝑊 (𝑉 )

Solution: 𝑊  is a subspace of ℝ𝑛 and its basis 𝐵 = {[
1
1
0
], [

−1
1
1

]} is an orthogonal basis (since the dot

product of its two vectors is 0), so we can apply the orthogonal decomposition theorem. (Don’t forget
to double-check these creiteria before using it!)

Hence,

proj𝑊 (𝑉 ) = proj𝑢1
(𝑉 ) = proj𝑢2

(𝑉 )

=
𝑢1 ⋅ 𝑉
‖𝑢1‖

2 𝑢1 +
𝑢2 ⋅ 𝑉
‖𝑢2‖

2 𝑢2

=
[

1
1
0
] ⋅ [

3
−1
2

]

‖[
1
1
0
]‖

2
⎣
⎢⎡

1
1
0⎦
⎥⎤ +

[
−1
1
1

] ⋅ [
3

−1
2

]

‖[
−1
1
1

]‖
2

⎣
⎢⎡

−1
1
1 ⎦

⎥⎤

=
2
2
⎣
⎢⎡

1
1
0⎦
⎥⎤ + −

2
3
⎣
⎢⎡

−1
1
1 ⎦

⎥⎤

=

⎣
⎢
⎢
⎢
⎡

5
3
1
3

−2
3⎦
⎥
⎥
⎥
⎤

Now we can compute

perp𝑊 (𝑉 ) = 𝑉 − proj𝑊 (𝑉 )

=
⎣
⎢⎡

3
−1
2 ⎦

⎥⎤ −
1
3
⎣
⎢⎡

5
1

−2⎦
⎥⎤

=

⎣
⎢
⎢
⎢
⎡

4
3

−4
3

8
3 ⎦

⎥
⎥
⎥
⎤

And there’s our answer!
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Lecture 25: Gram-Schmidt algorithm and QR factorization
Gram-Schmidt algorithm
• Input: 𝐵 = {𝑢1, …, 𝑢𝑘} basis for 𝑊 ⊆ ℝ𝑛

• Output: orthogonal basis for 𝑊  with 𝐵 = {𝑣1, …, 𝑣𝑘}
• Steps:

1. Set 𝑣1 = 𝑢1
2. Recursively apply the following fomula for 𝑘 vectors:

𝑣𝑘 = 𝑢𝑘 −
𝑣1 ⋅ 𝑢𝑘

‖𝑣1‖
2 𝑣1 − … −

𝑣𝑘−1 ⋅ 𝑢𝑘

‖𝑣𝑘−1‖
2 𝑣𝑘−1

For example, the first couple iterations of this second step:
1. 𝑣2 = 𝑢2 − 𝑣1⋅𝑢2

‖𝑣1‖2 𝑣1

‣ so 𝑣2 = perp𝑊1
(𝑣), 𝑊1 = span(𝑢1) = span(𝑣1)

2. 𝑣3 = 𝑢3 − 𝑣1⋅𝑢3

‖𝑣1‖2 𝑣1 − 𝑣2⋅𝑢2

‖𝑣2‖2 𝑣2

3. Repeat this
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Example: Let 𝑊 = span(𝑢1, 𝑢2, 𝑢3) ⊆ ℝ4, where 𝑢1 =
⎣
⎢
⎡

1
−1
−1
1 ⎦

⎥
⎤, 𝑢2 =

⎣
⎢
⎡

2
1
0
1⎦
⎥
⎤, 𝑢3 =

⎣
⎢
⎡

2
2
1
1⎦
⎥
⎤. Apply the

Gram-Schmidt algorithm to compute an orthogonal basis for 𝑊 .

Solution:

1) Set 𝑣1 = 𝑢1 =
⎣
⎢
⎡

1
−1
−1
1 ⎦

⎥
⎤

2) (using a tilde because we’ll modify 𝑣2)

̃𝑣2 = 𝑢2 −
𝑣1 ⋅ 𝑢𝑘

‖𝑣1‖
2 𝑣1 =

⎣
⎢
⎢
⎡2

1
0
1⎦
⎥
⎥
⎤

− ⎣
⎢
⎡

1
−1
−1
1 ⎦

⎥
⎤ ⋅

⎣
⎢
⎡

2
1
0
1⎦
⎥
⎤

‖
⎣
⎢
⎡

1
−1
−1
1 ⎦

⎥
⎤‖

2

⎣
⎢
⎢
⎡ 1

−1
−1
1 ⎦

⎥
⎥
⎤

=

⎣
⎢
⎢
⎢
⎢
⎢
⎡

3
2
3
2
1
2
1
2⎦
⎥
⎥
⎥
⎥
⎥
⎤

=
1
2
⎣
⎢
⎢
⎡3

3
1
1⎦
⎥
⎥
⎤

The fraction here would make the subsequent calculations annoying — but since we’re just looking for
a basis (not a vector space), it’s fine to scale the vector, since you’ll still get the same span. So we can
just ignore the fraction for this!

Note: in formal terms, scaling doesn’t modify orthogonality because 𝑢 ⋅ 𝑣 = 0 ⇔ 𝑢 ⋅ (𝑐𝑣) = 0, where 
𝑐 is a constant. Moreover, span(𝑢, 𝑣) = span(𝑢, 𝑐𝑣).

Hence, by scaling, we can take 𝑣2 =
⎣
⎢
⎡

3
3
1
1⎦
⎥
⎤.

3)

̃𝑣3 = 𝑢3 −
𝑣1 ⋅ 𝑢3

‖𝑣1‖
2 𝑣1 −

𝑣2 ⋅ 𝑢3

‖𝑣2‖
2 𝑣2 =

⎣
⎢
⎢
⎡2

2
1
2⎦
⎥
⎥
⎤

− ⎣
⎢
⎡

1
−1
−1
1 ⎦

⎥
⎤ ⋅

⎣
⎢
⎡

2
2
1
2⎦
⎥
⎤

‖
⎣
⎢
⎡

1
−1
−1
1 ⎦

⎥
⎤‖

2

⎣
⎢
⎢
⎡ 1

−1
−1
1 ⎦

⎥
⎥
⎤

− ⎣
⎢
⎡

3
3
1
1⎦
⎥
⎤ ⋅

⎣
⎢
⎡

2
2
1
2⎦
⎥
⎤

‖
‖‖
‖

⎣
⎢
⎡

3
3
1
1⎦
⎥
⎤

‖
‖‖
‖

2

⎣
⎢
⎢
⎡3

3
1
1⎦
⎥
⎥
⎤

=

⎣
⎢
⎢
⎢
⎡−1

2
0
1
2
1 ⎦

⎥
⎥
⎥
⎤

=
1
2
⎣
⎢
⎢
⎡−1

0
1
2 ⎦

⎥
⎥
⎤

Scaling like before, we have 𝑣3 =
⎣
⎢
⎡

−1
0
1
2 ⎦

⎥
⎤.

After all that, we have

{𝑣1, 𝑣2, 𝑣3} =

⎩{
{⎨
{{
⎧

⎣
⎢
⎢
⎡ 1

−1
−1
1 ⎦

⎥
⎥
⎤

,

⎣
⎢
⎢
⎡3

3
1
1⎦
⎥
⎥
⎤

,

⎣
⎢
⎢
⎡−1

0
1
2 ⎦

⎥
⎥
⎤

⎭}
}⎬
}}
⎫

and an orthogonal basis for 𝑊  is span(𝑢1, 𝑢2, 𝑢3).

Note: if we’d like to compute an orthonormal basis, first apply GS, then normalize the vectors.
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Lecture 26: QR factorization
QR factorization
Definition: Let 𝐴 be an 𝑚 × 𝑛 matrix with linearly independent columns (so 𝑚 ≥ 𝑛). Then applying
Gram-Schmidt to 𝑊 = col(𝐴) yields

𝐴 = 𝑄⏟
𝑚×𝑛

col(𝐴)= col(𝑄)
it has orthonormal

columns

𝑅⏟
𝑛×𝑛

it is invertible
and always triangular

Applications:
1. Numerical approximation of eigenvalues
2. The problem of least squares approximation

Note: 𝑄 has orthonormal columns, so

𝑄𝑇 𝑄 = 𝐼𝑛

Hence, if we know 𝐴 and 𝑄, then 𝑅 is computed as 𝑅 = 𝑄𝑇 𝐴, so the work consists of computing 𝑄.
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Example: Let 𝐴 = [
0
1
1

1
0
1

1
1
0
]. Find the QR factorization of 𝐴.

Solution: We verify that 𝐴 has linearly independent columns:

⎣
⎢
⎡0

1
1

1
0
1

1
1
0⎦
⎥
⎤ ⟶⟶⟶⟶⟶⟶⟶⟶⟶

𝑅3↔𝑅1

⎣
⎢
⎡1

1
0

1
0
1

0
1
1⎦
⎥
⎤ →

⎣
⎢
⎡1

0
0

1
−1
1

0
1
1⎦
⎥
⎤ →

⎣
⎢
⎡1

0
0

1
−1
0

0
1
2⎦
⎥
⎤

rank(𝐴) = 3 = # columns of A ⇒ all columns of 𝐴 are linearly independent.

We apply Gram-Schmidt to 𝑊 = col(𝐴) = span(𝑢1, 𝑢2, 𝑢3), where 𝑢1 = [
0
1
1
], 𝑢2 = [

1
0
1
], 𝑢3 = [

1
1
0
].

Computing this:

1) 𝑣1 = 𝑢1 = [
0
1
1
]

2) 𝑣2 = 𝑢2 − 𝑣1⋅𝑢2

‖𝑣1‖2 𝑣1 = [
1
0
1
] − 1

2[
0
1
1
] =

⎣
⎢
⎡

1
−1

2
1
2 ⎦

⎥
⎤ = 1

2[
2

−1
1

]

3) 𝑣3 = 𝑢3 − 𝑣1⋅𝑢3

‖𝑣1‖2 𝑣1 − 𝑣2⋅𝑢3

‖𝑣2‖2 𝑣2 = [
1
1
0
] − ⎣

⎢⎡
0
1
1⎦
⎥⎤⋅

⎣
⎢⎡

1
1
0⎦
⎥⎤

2 [
0
1
1
] −

1
2
⎣
⎢⎡

2
−1
1 ⎦

⎥⎤⋅
⎣
⎢⎡

1
1
0⎦
⎥⎤

(1
2)2‖

⎣
⎢⎡

2
−1
1 ⎦

⎥⎤‖

2 (−1
2)[

2
−1
1

] = [
1
1
0
] − 1

2[
0
1
1
] −

1
6[

2
−1
1

] =

⎣
⎢⎢
⎡

2
3
2
3

−2
3⎦
⎥⎥
⎤

= 2
3[

1
1

−1
]

Hence, an orthogonal basis for col(𝐴) is 𝑣1 = [
0
1
1
], 𝑣2 = [

2
−1
1

], 𝑣3 = 2
3[

1
1

−1
]. We now normalize these

vectors so as to get an orthonormal basis.

So to compute that:

̃𝑣1 =
1

‖𝑣1‖
𝑣1 =

1
√

2⎣
⎢⎡

0
1
1⎦
⎥⎤ =

⎣
⎢
⎢
⎢
⎡ 0

1√
2

1√
2⎦
⎥
⎥
⎥
⎤

̃𝑣2 =
1

‖𝑣2‖
𝑣2 =

1

1
2‖[

2
−1
1

]‖

1
2
⎣
⎢⎡

2
−1
1 ⎦

⎥⎤ =
1

√
6⎣
⎢⎡

2
−1
1 ⎦

⎥⎤

̃𝑣3 =
1

‖𝑣3‖
𝑣3 =

1

2
3‖[

1
1

−1
]‖

2
3
⎣
⎢⎡

1
1

−1⎦
⎥⎤ =

1
√

3⎣
⎢⎡

1
1

−1⎦
⎥⎤

Hence:
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𝑄 =

⎣
⎢
⎢
⎡ |

̃𝑣1

|

|
̃𝑣2

|

|
̃𝑣3

| ⎦
⎥
⎥
⎤

=

⎣
⎢
⎢
⎢
⎢
⎡ 0

1√
2

1√
2

2√
6

− 1√
6

1√
6

1√
3

1√
3

− 1√
3⎦
⎥
⎥
⎥
⎥
⎤

We also would like to compute the matrix 𝑅. To do so, we can use 𝑅 = 𝑄𝑇 𝐴. So then

𝑅 =

⎣
⎢
⎢
⎢
⎢
⎡ 0

2√
6

1√
3

1√
2

− 1√
6

1√
3

1√
2

1√
6

− 1√
3⎦
⎥
⎥
⎥
⎥
⎤

∗
⎣
⎢
⎡0

1
1

1
0
1

1
1
0⎦
⎥
⎤ =

⎣
⎢
⎢
⎢
⎢
⎡

2√
2

0

0

1√
2

3√
6

0

1√
2

1√
6

2√
3⎦
⎥
⎥
⎥
⎥
⎤

This is an upper triangular matrix! (It always will be.)
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Lecture 27: least squares approximation
Least squares approximation
Motivating example: Find a curve that best fits a set of data points.

Let’s use data points (1, 2), (2, 2), (3, 4). Assume we would like a line 𝑦 = 𝑎𝑥 + 𝑏 that best fitst these
points. The line should minimize

‖𝜀‖2 = ‖
⎣
⎢
⎡

𝜀1
𝜀2
𝜀3⎦

⎥
⎤‖

2

= 𝜀2
1 + 𝜀2

2 + 𝜀2
3

where 𝜀 is the vertical distance from the point to the line. Plugging the points into 𝑦 = 𝑎𝑥 + 𝑏:

⎩{
⎨
{⎧𝑎 + 𝑏 = 2

2𝑎 + 𝑏 = 2
3𝑎 + 𝑏 = 4

⇔
⎣
⎢⎡

1
2
3

1
1
1⎦
⎥⎤[𝑎𝑏] =

⎣
⎢⎡

2
2
4⎦
⎥⎤

This gives us an equation in the form 𝐴𝑥 = 𝑏.

Definition: If 𝐴 is an 𝑚 × 𝑛 matrix and 𝑏 ∈ ℝ𝑛, a least square solution to 𝐴𝑥 = 𝑏 is a vector ̃𝑥 ∈ ℝ𝑛

such that

‖𝑏 − 𝐴 ̃𝑥‖ ≤ ‖𝑏 − 𝐴𝑥‖, ∀𝑥 ∈ ℝ𝑛

Note: ∀ means “for all”

Theorem: First, 𝐴𝑥 = 𝑏 has at least one least square solution.

Moreover,

1) ̃𝑥 is a least-squares solution to 𝐴𝑥 = 𝑏 ⇔ ̃𝑥 is a solution to the normal equation 𝐴𝑇 𝐴⏟
square
matrix

𝑥 = 𝐴𝑇 𝑏⏟
column
vector

2) The solution is unique ⇔ 𝐴𝑇 𝐴 is invertible ⇔ 𝐴 has linearly independent columns

For example, assume 𝐴 is 6 × 5 and rank(𝐴) = 5. Does there exist a unique least-squares solution to
𝐴𝑥 = 𝑏 for any 𝑏? ⇝ yes

3) When there is a unique solution, it can be found:

̃𝑥 = (𝐴𝑇 𝐴)−1𝐴𝑇 𝑏
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Example: Returning to the above motivating example: for the points (1, 2), (2, 2), (3, 4), find a line 
𝑦 = 𝑎𝑥 + 𝑏 that best approximates the data points.

⎩{
⎨
{⎧𝑎 + 𝑏 = 2

2𝑎 + 𝑏 = 2
3𝑎 + 𝑏 = 4

⇔
⎣
⎢⎡

1
2
3

1
1
1⎦
⎥⎤[𝑎𝑏] =

⎣
⎢⎡

2
2
4⎦
⎥⎤

This is in the form 𝐴𝑥 = 𝑏. Solving the normal equation 𝐴𝑇 𝐴𝑥 = 𝐴𝑇 𝑏:

𝐴𝑇 𝐴 = [1
1

2
1

3
1]

⎣
⎢⎡

1
2
3

1
1
1⎦
⎥⎤ = [14

6
6
3]; 𝐴𝑇 𝑏 = [1

1
2
1

3
1]

⎣
⎢⎡

2
2
4⎦
⎥⎤ = [18

8 ]

We want to solve

[14
6

6
3][𝑎𝑏] = [18

8 ] ⇔⇔⇔⇔⇔⇔⇔⇔⇔⇔⇔⇔⇔⇔⇔⇔⇔⇔⇔⇔⇔⇔⇔⇔⇔⇔⇔⇔⇔⇔⇔⇔⇔⇔

Gauss-Jordan
or compute (𝐴𝑇 𝐴)−1

̃𝑥 =
1
6
[ 3
−6

−6
14][18

8 ] =
1
3
[3
2]

Then the least squares solution is ̃𝑥 = [
3
3
2
3

] = [
1
2
3
].

Now let’s compute the error of this approximation:

‖𝑏 − 𝐴 ̃𝑥‖ = ‖
⎣
⎢⎡

2
2
4⎦
⎥⎤ −

⎣
⎢⎡

1
2
3

1
1
1⎦
⎥⎤[

1
2
3
]‖ = ‖

⎣
⎢⎡

2
2
4⎦
⎥⎤ −

1
3
⎣
⎢⎡

5
8
11⎦

⎥⎤‖ =

‖
‖
‖
‖
‖

⎣
⎢
⎢
⎢
⎡

1
3

−2
3

1
3 ⎦

⎥
⎥
⎥
⎤

‖
‖
‖
‖
‖

=
1
3
‖
⎣
⎢⎡

1
−2
1 ⎦

⎥⎤‖ =
1
3
√

6
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Ok but what if we added another point and a parabola would better fit? Now we would like to use 
𝑦 = 𝑎 + 𝑏𝑥 + 𝑐𝑥2. Plugging in the data points:

(−1, 1) 𝑎 − 𝑏 + 𝑐 = 1

(0, −1) 𝑎 = −1

(1, 0) 𝑎 + 𝑏 + 𝑐 = 0

(2, 2) 𝑎 + 2𝑏 + 4𝑐 = 2

and that becomes

⎣
⎢
⎢
⎡1

1
1
1

−1
0
1
2

1
0
1
4⎦
⎥
⎥
⎤

[
𝑎
𝑏
𝑐
] =

⎣
⎢
⎢
⎡ 1

−1
0
2 ⎦

⎥
⎥
⎤

And then solving the normal equation 𝐴𝑇 𝐴𝑥 = 𝐴𝑇 𝑏:

𝐴𝑇 𝐴 =
⎣
⎢⎡

1
−1
1

1
0
0

1
1
1

1
2
4⎦
⎥⎤

⎣
⎢
⎢
⎡1

1
1
1

−1
0
1
2

1
0
1
4⎦
⎥
⎥
⎤

=
⎣
⎢
⎡4

2
6

2
6
8

6
8
18⎦

⎥
⎤

𝐴𝑇 𝑏 =
⎣
⎢⎡

1
−1
1

1
0
0

1
1
1

1
2
4⎦
⎥⎤

⎣
⎢
⎢
⎡ 1

−1
0
2 ⎦

⎥
⎥
⎤

=
⎣
⎢⎡

2
3
9⎦
⎥⎤

Using Gaussian elimination we solve:

⎣
⎢
⎡4

2
6

2
6
8

6
8
18⎦

⎥
⎤[

𝑎
𝑏
𝑐
] =

⎣
⎢⎡

2
3
9⎦
⎥⎤ ⇔

⎣
⎢
⎡4

2
6

2
6
8

6
8
18

2
3
9⎦
⎥
⎤ ⇒ [

𝑎
𝑏
𝑐
] =

⎣
⎢
⎢
⎡− 7

10

−3
5

1 ⎦
⎥
⎥
⎤

Then the least square solution is

̃𝑥 = [
𝑎
𝑏
𝑐
] =

⎣
⎢
⎢
⎡− 7

10

−3
5

1 ⎦
⎥
⎥
⎤

which is equivalent to saying that the parabola is

𝑦 = −
7
10

−
3
5
𝑥 + 𝑥2

Least squares and QR factorization
Theorem: Let 𝐴 be a matrix 𝑚 × 𝑛 with linearly independent columns and 𝑏 ∈ ℝ𝑛. If 𝐴 = 𝑄𝑅 is the
QR-factorization of 𝐴, then the LS solution to 𝐴𝑥 = 𝑏 is:

̃𝑥 = 𝑅−1𝑄𝑇 𝑏

or equivalently

(nevermind lol)
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Lecture 28: intro to differential equations
For the differential equations part of this class, we’ll be covering chapters 1-5 of “A First Course in
Differential Equations with Applications”, 11th edition, by D. Zill.

What is a differential equation? A differential equation is an equation involving one or more functions
and their derivatives, with one or more independent variables.

Classification of differential equations can be done according to type, order, and linearity.

Classification by type
1. Ordinary differential equations (ODE)

• There is only one independent variable
• e.g. 𝑦′ + 𝑦 = 5𝑒𝑥

‣ so 𝑦′ = d𝑦
d𝑥  where 𝑦 is the dependent variable and 𝑥 is the independent variable

• e.g. d𝑥
d𝑡 + d𝑦

d𝑡 = 3𝑥 + 𝑦
‣ so 𝑡 is independent and 𝑥, 𝑦 are dependent

2. Partial differential equations (PDE)
• There are at least two independent variables
• e.g. 𝜕

2𝑢
𝜕𝑥2 + 𝜕2𝑢

𝜕𝑦2 = 0
‣ 𝑥, 𝑦 are independent and 𝑢 is a function of 𝑥, 𝑦
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Classification by order
Definiton: The order of a differential equation is the highest derivative in the equation.

Examples:

𝑦″ + 5𝑦 = 3𝑒𝑥 + sin(𝑥) is a second-order ordinary differential equation because we have the second
derivative of 𝑦.

(𝑦‴)2 + (𝑦″)4 + (𝑦′)6 = 𝑒𝑥 is a third-order ODE since there’s the third derivative in there.

𝑦′𝑦 + 𝑦 = sin(𝑥) is a first-order ODE.

In general, an 𝑛th-order ODE can be written in the form

𝐹(𝑥, 𝑦, 𝑦′, …, 𝑦(𝑛) = 0

For example, 𝑦″ + 5𝑦 = 3𝑒𝑥 − sin(𝑥) = 0.

Often (and always for this course), we can solve 𝐹(𝑥, 𝑦, 𝑦′, …, 𝑦(𝑛)) for 𝑦(𝑛) with

𝑦(𝑛) =
d𝑛𝑦
d𝑥𝑛 = 𝑓(𝑥, 𝑦, 𝑦′, …, 𝑦(𝑛−1))

This is the normal form of the 𝑛th-order ODE.

Example: 𝑦″ + 5𝑦 = 3𝑒𝑥 + sin(𝑥) has normal form

𝑦″ = 3𝑒𝑥 + sin(𝑥) − 5𝑦 + 0𝑦′
⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑓(𝑥,𝑦,𝑦′)

(obviously the 0𝑦′ is optional, it’s just there for clarity)

Example: What is the normal form of 𝑦 − 𝑥 + 4𝑥𝑦′ = 0?

Solution: 𝑦′ = 𝑥−𝑦
4 𝑥

Another important form for a first-order ODE is

𝑀(𝑥, 𝑦) d𝑥 + 𝑁(𝑥, 𝑦) d𝑦 = 0

Example: What is the differential form of 𝑦 − 𝑥 + 4𝑥𝑦′ = 0?

Solution: We replace 𝑦′ by d𝑦
d𝑥 :

𝑦 − 𝑥 + 4𝑦
d𝑦
d𝑥

= 0

then multiply by d𝑥:

(𝑦 − 𝑥) d𝑥 + 4𝑥 d𝑦 = 0

(Here, 𝑀(𝑥, 𝑦) = 𝑦 − 𝑥 and 𝑁(𝑥, 𝑦) = 4𝑥)
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Classification by linearity
• Differential equations

‣ Nonlinear
‣ Linear

– Homogenous: 𝑔(𝑥) = 0
– Non-homogenous: 𝑔(𝑥) ≠ 0

Definition: An 𝑛th-order ODE is said to be liniear if it is of the form

𝑎𝑛(𝑥)
d𝑛𝑦
d𝑥𝑛 + 𝑎𝑛−1(𝑥)

d𝑛−1𝑦
d𝑥𝑛−1 + … + 𝑎1(𝑥)

d𝑦
d𝑥

+ 𝑎0(𝑥)𝑦 = 𝑔(𝑥)

Note:
1. 𝑦, 𝑦′, …, 𝑦(𝑛) have power 1.
2. The coefficients of 𝑦, 𝑦′, …, 𝑦(𝑛) are functions of 𝑥 only
3. 𝑔(𝑥) depends on 𝑥 only

Example: Is (𝑦 − 𝑥) d𝑥 + 4𝑥 d𝑦 = 0 linear or not?

Solution: Dividing by d𝑥,

𝑦 − 𝑥 + 4𝑥
d𝑦
d𝑥

= 0 ⇒ 4𝑥⏟
𝑎1(𝑥)

𝑦′ + ⏟
𝑎0(𝑥)

𝑦 = 𝑥⏟
𝑔(𝑥)

(That blank 𝑎0(𝑥) isn’t a typo; there’s just nothing there)

So yes, it is linear!

Example: Is (1 − 𝑦)𝑦′ + 2𝑦 = 𝑒𝑥 linear? ⇝ No, because the coefficient of 𝑦′ is not a function of 𝑥 only.

Example: Is d
2𝑦

d𝑥
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Lecture 29: solutions to ODE, IVP, direction fields, and au-
tonomous
Solutions to ODEs
Definiton: Given an ODE 𝐹(𝑥, 𝑦, 𝑦′, …, 𝑦(𝑛)) = 0, a solution is any function 𝜑 : 𝐼 → ℝ (𝐼  is an in-
terval (𝑎, 𝑏), (−∞, 𝑎), (𝑎, ∞), (−∞, +∞)) and posessing at least 𝑛 continuous derivatives such that

𝐹(𝑥, 𝜑(𝑥), 𝜑′(𝑥), …, 𝜑(𝑛)(𝑥)) = 0

Note: a solution comes along an interval.

Solutions to ODEs can be given explicitly or implicitly:

Explicit solutions
Explicit solutions are in the form 𝑦 = 𝑓(𝑥), where the dependent variable is given in terms of the
independent variable only. In other words, 𝑦 is a function of 𝑥 only.

Example: for 𝑦″ − 2𝑦′ + 𝑦 = 0, which is a second-order homogenous linear ODE, an explicit solution
is 𝑦 = 𝑒𝑥 + 𝑥𝑒𝑥, 𝑥 ∈ (−∞, ∞).

We can also check that this is indeed a solution:

𝑦′ = 𝑒𝑥 + 𝑒𝑥 + 𝑥𝑒𝑥 = 2𝑒𝑥 + 𝑥𝑒𝑥

𝑦″ = 2𝑒𝑥 + 𝑒𝑥 + 𝑥𝑒𝑥 = 3𝑒𝑥 + 𝑥𝑒𝑥

So

(3𝑒𝑥 + 𝑥𝑒𝑥) − 2(2𝑒𝑥 + 𝑥𝑒𝑥) + (𝑒𝑥 + 𝑥𝑒𝑥) = 0

Yep, this is true! So it’s a solution.

Implicit solutions
Implicit solutions are in the form 𝐺(𝑥, 𝑦) = 0, which is a solution curve. 𝑦 is not a function of 𝑥.

Example: For 𝑦″ = 2𝑦(𝑦′)3, an implicit solution is 𝑦3 + 3𝑦 = 1 − 3𝑥, 𝑥 ∈ (−∞, ∞).

Checking this requires that we apply implicit differentiation:

For the first derivative, we have

3𝑦2𝑦′ + 3𝑦′ = −3

and then solving for 𝑦′:

𝑦′ =
−3

3𝑦2 + 3

For the second derivative, we have

6𝑦𝑦′𝑦′ + 3𝑦2𝑦″ + 3𝑦″ = 0

and then solving for 𝑦″:

𝑦″ =
−6𝑦(𝑦′)2

3𝑦2 + 3

Now we must check that 𝑦″ = 2𝑦(𝑦′)3. If you solve this out, it holds, so this is a solution.
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Initial value problems
An ODE has infinitely many solution curves (in general). For example, for d𝑦

d𝑥 = −𝑥
𝑦  we have the solu-

tion 𝑥2 + 𝑦2 = 𝐶 , which equates to a circle of any radius. So how do we choose a particular solution?
We consider initial value problems:

Solve

d𝑛𝑦
d𝑥𝑛 = 𝑓(𝑥, 𝑦, …, 𝑦(𝑛−1))

subject to 𝑦(𝑥0) = 𝑦0, 𝑦′(𝑥0) = 𝑦1, …, 𝑦(𝑛−1)(𝑥0) = 𝑦𝑛−1

Example: For 𝑦″ − 2𝑦′ + 𝑦 = 0, the general solution is

𝑦 = 𝑐1𝑒𝑥 + 𝑐2𝑒𝑥 on (−∞, ∞), 𝑐1, 𝑐2, ∈ ℝ

and then we have

𝑦′ = 𝑐1𝑒𝑥 + 𝑐2𝑒𝑥 + 𝑐2𝑥𝑒𝑥 = (𝑐1 + 𝑐2)𝑒𝑥 + 𝑐2𝑥𝑒𝑥

𝑐1 and 𝑐2 are parameters, so we have a 2-parameter set of solutions.

Now, consider the IVP in which we have 𝑦″ − 2𝑦′ + 𝑦 = 0 subject to 𝑦(0) = 1, 𝑦′(0) = 2. Since we
know the general solution, all we have to do now is plug in the initial conditions.

Plugging in:

𝑦(0) = 1 ⇒ (𝑥, 𝑦) = (0, 1) ⇒ 1 = 𝑐1𝑒0 + 𝑐20𝑒0 ⇒ 1 = 𝑐1 + 0𝑐2

𝑦′(0) = 2 ⇒ (𝑥, 𝑦) = (0, 2) ⇒ 2 = (𝑐1 + 𝑐2)𝑒0 + 𝑐20𝑒0 ⇒ 2 = 𝑐1 + 𝑐2

And now we have a system of linear equations! Solving that with 𝑐1 = 1, 𝑐2 = 1, the particular solu-
tion is

𝑦 = 𝑒𝑥 + 𝑥𝑒𝑥 on (−∞, ∞)

Direction fields
For first-order ODEs in normal form d𝑦

d𝑥 = 𝑓(𝑥, 𝑦), a direction field is a graphical representation of the
slopes of the solution curves.

A particular case is d𝑦
d𝑥 = 𝑓(𝑦), which is an autonomous equation.

A critical point of d𝑦
d𝑥 = 𝑓(𝑦) is any real number 𝐶 such that 𝑓(𝑐) = 0.

Example: For d𝑦
d𝑥 = sin(𝑦), the critical points are where sin(𝑦) = 0, so they are any point with 𝑦 =

𝑘𝜋, 𝑘 ∈ ℤ.

We use the critical points to graph a direction field of an autonomous equation.

Lecture 29: solutions to ODE, IVP, direction fields, and autonomous
compiled on Wednesday, October 2, 2024

85/120
back to contents ↑



Lecture 30: ⁇? I missed this one to watch the eclipse

Lecture 30: ⁇? I missed this one to watch the eclipse
compiled on Wednesday, October 2, 2024

86/120
back to contents ↑



Lecture 32: exact equations
Definiton: a first-order ODE 𝑀(𝑥, 𝑦) d𝑥 + 𝑁(𝑥, 𝑦) d𝑦 = 0 (which is differential form) is called exact
if ∃ (there exists) a differential function 𝑓(𝑥, 𝑦) such that 𝜕𝑓

𝜕𝑥 = 𝑀(𝑥, 𝑦), 𝜕𝑓
𝜕𝑦 = 𝑁(𝑥, 𝑦). In this case, 

𝜕𝑓
𝜕𝑥 d𝑥 + 𝜕𝑓

𝜕𝑦 d𝑦⏟⏟⏟⏟⏟⏟⏟
Increment of 𝑓 as

we move from (𝑥,𝑦)
to (𝑥+ d𝑥,𝑦+ d𝑦)

= 0. An implicit solution is 𝑓(𝑥, 𝑦) = 𝑐.

Method of solution (how to find 𝑓(𝑥, 𝑦)):

1. Integrate 𝑀(𝑥, 𝑦) with respect to 𝑥.

𝑓(𝑥, 𝑦) = ∫ 𝑀(𝑥, 𝑦) d𝑥 + 𝑔(𝑦)

where 𝑔(𝑦) is an arbitrary function of 𝑦.

2. Differentiate with rexpect to 𝑦 and set equal to 𝑁(𝑥, 𝑦), then solve for 𝑔′(𝑦).

𝑔′(𝑦) = 𝑁(𝑥, 𝑦) −
𝜕
𝜕𝑦

(∫ 𝑀(𝑥, 𝑦) d𝑥)

That’s the formula, but it’s easier to just remember the workflow instead of trying to memorize it.

3. Integrate 𝑔′(𝑦) with respect to 𝑦.

𝑔(𝑦) = ∫ 𝑔′(𝑦) d𝑦

Then substitute the equation in step 1.

Remember that a particular solution is 𝑓(𝑥, 𝑦) = 𝑐 — with a constant, not just this function! We can
compute the constant from initial values.
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Example: Is 2𝑥𝑦 d𝑥 + (𝑥2 − 1) d𝑦 = 0 an exact equation? If so, solve.

Solution: 𝑀(𝑥, 𝑦) = 2𝑥𝑦, 𝑁(𝑥, 𝑦) = 𝑥2 − 1.

Then we apply the criterion of exactness:

𝜕𝑀
𝜕𝑦

= 2𝑥   
𝜕𝑁
𝜕𝑥

= 2𝑥

They’re equal, so the equation is exact.

Now to solve!

𝑓(𝑥, 𝑦) = ∫ 2𝑥𝑦 d𝑥 + 𝑔(𝑦)

⇒ 𝑓(𝑥, 𝑦) = 𝑥2𝑦 + 𝑔(𝑦)

then do

𝜕𝑓
𝜕𝑦

= 𝑥2 + 𝑔′(𝑦)

We set this equal to 𝑁(𝑥, 𝑦) = 𝑥2 − 1

𝑥2 − 1 = 𝑥2 + 𝑔′(𝑦)

⇒ 𝑔′(𝑦) = −1

Now we integrate this:

𝑔(𝑦) = ∫ 𝑑′(𝑦) d𝑦 = ∫ −1 d𝑦 = −𝑦

and plugging that back into the equation from before

𝑓(𝑥, 𝑦) = 𝑥2𝑦 − 𝑦

Now we have our function, but we need to remember to set it equal to a constant! Hence, the final
answer is

𝑥2𝑦 − 𝑦 = 𝐶 for some 𝐶 ∈ ℝ

Solving this for 𝑦, we have

𝑦 =
𝐶

𝑥2 − 1

so any of the intervals (−∞, −1), (−1, 1), (1, ∞) can be chosen as an interval of solution.

All these intervals are correct — unless we have an initial value problem.

Let’s see this with the case where 𝑦(3) = 2, so (𝑥 = 3, 𝑦 = 2).

Plugging this into the general solution,

2 =
𝐶

9 − 1
=

𝐶
8

⇒ 𝐶 = 16

The solution is
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𝑦 =
16

𝑥2 − 1
, 𝑥 ∈ (1, ∞)

We choose the interval based on the 𝑥 value.

Example: solve the following:

(𝑒2𝑦 − 𝑦 cos(𝑥𝑦)) d𝑥 + (2𝑥𝑒2𝑦 − 𝑥 cos(𝑥𝑦) + 2𝑦) d𝑦 = 0

Solution: Firstly, is this equation exact?

𝑀(𝑥, 𝑦) = 𝑒2𝑦 − 𝑦 cos(𝑥𝑦)

𝑁(𝑥, 𝑦) = 2𝑥𝑒2𝑦 − 𝑥 cos(𝑥𝑦) + 2𝑦

𝜕𝑀
𝜕𝑦

= 2𝑒2𝑦 − (cos(𝑥𝑦) + 𝑦(− sin(𝑥𝑦)𝑥))

𝜕𝑁
𝜕𝑥

= 2𝑒2𝑦 − (cos(𝑥𝑦) + 𝑥(− sin(𝑥𝑦)𝑦))

These two are equal, so the equation is exact!

Now solving:

1) 𝑓(𝑥, 𝑦) = ∫(𝑒2𝑦 − 𝑦 cos(𝑥𝑦)) d𝑥 + 𝑔(𝑦)

⇒ 𝑓(𝑥, 𝑦) = 𝑥𝑒2𝑦 − sin(𝑥𝑦) + 𝑔(𝑦)

2) 
𝜕𝑓
𝜕𝑦

= 2𝑥𝑒2𝑦 − 𝑥 cos(𝑥𝑦) + 𝑔′(𝑦) = 𝑁(𝑥, 𝑦)

Solving for 𝑔′(𝑦):

𝑔′(𝑦) = 𝑁(𝑥, 𝑦) − 2𝑥𝑒2𝑦 + 𝑥 cos(𝑥𝑦) = 2𝑦

3) 𝑔(𝑦) = ∫ 𝑔′(𝑦) d𝑦 = ∫ 2𝑦 d𝑦 = 𝑦2

Hence:

𝑓(𝑥, 𝑦) = 𝑥𝑒2𝑦 − sin(𝑥𝑦) + 𝑦2

So the soliution to the differential equation is

𝑥𝑒2𝑦 − sin(𝑥𝑦) + 𝑦2 = 𝐶 for some 𝑐 ∈ ℝ

Note: this solution represents a family of implicit solutions.

Lecture 32: exact equations
compiled on Wednesday, October 2, 2024

89/120
back to contents ↑



Lecture 32: more on exact equations and linear models
From last time…

Definition: 𝑀(𝑥, 𝑦) d𝑥 + 𝑁(𝑥, 𝑦) d𝑦 = 0 is exact if ∃ a function f such that 𝜕𝑓
𝜕𝑥 = 𝑀(𝑥, 𝑦) and 𝜕𝑓

𝜕𝑦 =
𝑁(𝑥, 𝑦).

Criterion for exactness: 𝑀(𝑥, 𝑦) d𝑥 + 𝑁(𝑥, 𝑦) d𝑦 = 0 is exact if and only if 𝜕𝑀
𝜕𝑦 = 𝜕𝑁

𝜕𝑥 .

Integrating factors
Sometimes a non-exact equation can be made exact by finding an integrating factor. Here’s how:

Assume 𝑀(𝑥, 𝑦) d𝑥 + 𝑁(𝑥, 𝑦) d𝑦 = 0 is non-exact. Then, look at

𝜕𝑀
𝜕𝑦 − 𝜕𝑁

𝜕𝑥

𝑁

1) If this is a function of 𝑥 only, then the integrating factor is

𝜇(𝑥) = exp
⎝
⎜⎛∫

⎝
⎜⎛

𝜕𝑀
𝜕𝑦 − 𝜕𝑁

𝜕𝑥

𝑁 ⎠
⎟⎞ d𝑥

⎠
⎟⎞

2) If this is a function of 𝑦 only, then the integrating factor is

𝜇(𝑦) = exp
⎝
⎜⎛∫

⎝
⎜⎛

𝜕𝑁
𝜕𝑥 − 𝜕𝑀

𝜕𝑦

𝑀 ⎠
⎟⎞ d𝑥

⎠
⎟⎞

In either case, we can then turn 𝑀(𝑥, 𝑦) d𝑥 + 𝑁(𝑥, 𝑦) d𝑦 = 0 into an exact equation by multiplying
it by the integrating factor.
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Example: Solve (2𝑦2 + 3𝑥) d𝑥 + 2𝑥𝑦 d𝑦 = 0.

Solution: First, check for exactness:

{
𝑀(𝑥, 𝑦) = 2𝑦2 + 3𝑥
𝑁(𝑥, 𝑦) = 2𝑥𝑦

⇝
⎩{
⎨
{⎧𝜕𝑀

𝜕𝑦 = 4𝑦
𝜕𝑁
𝜕𝑥 = 2𝑦

𝜕𝑀
𝜕𝑦

≠
𝜕𝑁
𝜕𝑥

∴ the equation
is not exact

Now, let’s check if we can make the equation exact:

𝜕𝑀
𝜕𝑦 − 𝜕𝑁

𝜕𝑥

𝑁
=

4𝑦 − 2𝑦
2𝑥𝑦

=
2𝑦
2𝑥𝑦

=
1
𝑥

✓ we can make the equation into an exact equation!

Ok so finding the integrating factor:

𝜇(𝑥) = exp
⎝
⎜⎛∫

⎝
⎜⎛

𝜕𝑀
𝜕𝑦 − 𝜕𝑁

𝜕𝑥

𝑁 ⎠
⎟⎞ d𝑥

⎠
⎟⎞ = 𝑒∫ 1

𝑥 d𝑥 = 𝑒ln|𝑥|

Because of the absolute value here, we have to do some further analysis.

If we select 𝑥 ∈ (0, ∞), then |𝑥| = 𝑥, so 𝜇(𝑥) = 𝑒ln|𝑥| = 𝑒ln 𝑥 = 𝑥 ∀𝑥 ∈ (0, ∞)
(remember “∀” means “for all”, so (0, ∞) is the interval of the solution)

We now multiply the ODE by the integrating factor 𝜇(𝑥) = 𝑥:

𝑥((2𝑦2 + 3𝑥) d𝑥 + (2𝑥𝑦) d𝑦 = 0)

(2𝑥𝑦2 + 3𝑥2) d𝑥 + 2𝑥2𝑦 d𝑦 = 0

⇝ {
𝑀(𝑥, 𝑦) = 2𝑥𝑦2 + 3𝑥2

𝑁(𝑥, 𝑦) = 2𝑥2𝑦

⇝
⎩{
⎨
{⎧𝜕𝑀

𝜕𝑦 = 4𝑥𝑦
𝜕𝑁
𝜕𝑥 = 4𝑥𝑦

∴ the equation
is exact

Solving the new equation:

1)

𝑓(𝑥, 𝑦) = ∫ 𝑀(𝑥, 𝑦) d𝑥 + 𝑔(𝑦)

𝑓(𝑥, 𝑦) = ∫(2𝑥𝑦2 + 3𝑥2) d𝑥 + 𝑔(𝑦)

𝑓(𝑥, 𝑦) = 𝑥2𝑦2 + 𝑥3 + 𝑔(𝑦)

2) differentiate and set equal to 𝑁(𝑥, 𝑦)

𝜕𝑓
𝜕𝑦

= 2𝑥2𝑦 + 𝑔′(𝑦) = 2𝑥2𝑦
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3) then

𝑔′(𝑦) = 0 ⇒ 𝑔(𝑦) = 𝐶 for some 𝐶 ∈ ℝ

Hence

𝑓(𝑥, 𝑦) = 𝑥2𝑦2 + 𝑥3 + 𝐶

So the family of solutions is

𝑥2𝑦2 + 𝑥3 + 𝐶 = 𝐾 for 𝐶, 𝐾 ∈ ℝ

⇒ 𝑥2𝑦2 + 𝑥3 = ̄𝐶 for ̄𝐶 ∈ ℝ

and the interval of the solution is (0, ∞).

Linear models (§ 3.1)
Some real-life applications have a first-order ODE as a mathematical model:
1. Growth and decay: d𝑃

d𝑡 = 𝑘𝑃 , 𝑃(0) = 𝑃0
• Growth if 𝑘 > 0, decay if 𝑘 < 0
• We can rewrite this as a first-order linear ODE, 𝑃 ′ − 𝑘𝑃 = 0, which we can solve with an inte-

grating factor
2. Newton’s Law of Cooling/Warming: d𝑇

d𝑡 = 𝑘(𝑇 − 𝑇𝑚)
• 𝑇 (𝑡) is the temperature in time of a given object at time 𝑡
• 𝑇𝑚 is the temperature of the environment (surrounding the object), which we assume is constant

3. Mixtures of solutions, like brine (salt & water): d𝐴
d𝑡 = 𝑅in − 𝑅out

• 𝐴(𝑡) is the amount of salt (by mass) in the tank at time 𝑡
• The rate at which 𝐴(𝑡) changes is a net rate

‣ 𝑅in is the input rate of salt; 𝑅out is the output rate
‣ They’re usually computed like this:

– 𝑅in = (concdntration of salt in inflow)∗(input rate of brine)
– 𝑅out = (concentration of salt in outflow)∗(output rate of brine)
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Mixture example
Example: A tank initially contains 50 L of water and 20 g of salt. Water containing a salt concentra-
tion of 2 g/L enters the tank at a rate of 5 L/min, and the well-stirred solution leaves the tank at the
same rate.

a) Find an expression for the amount of salt in the tank at time 𝑡.

Solution:

d𝐴
d𝑡

= 𝑅in − 𝑅out = (2
𝑔
𝐿

)(5
𝐿

min
) − (

𝐴(𝑡)
50𝐿

)(
5𝐿
min

) = 10
𝑔

min
−

𝐴(𝑡)
10

𝑔
min

d𝐴
d𝑡

= 10 −
𝐴(𝑡)
10

⇔
d𝐴
d𝑡

+
𝐴(𝑡)
10

= 10 ⇔
d𝐴
d𝑡

+
1
10⏟
𝑃(𝑡)

𝐴(𝑡) = 10

Integrating factor:

𝜇(𝑡) = 𝑒∫ 𝑃(𝑡) d𝑡 = 𝑒∫ 1
10 d𝑡 = 𝑒 1

10𝑡

Then multiply by 𝜇(𝑡):

𝑒 1
10𝑡

d𝐴
d𝑡

+
1
10

𝑒 1
10𝑡𝐴(𝑡) = 𝑒 1

10𝑡 ∗ 10

d
d𝑡

(𝑒 1
10𝑡𝐴(𝑡)) = 10𝑒 1

10𝑡

Integrating both sides:

𝑒 1
10𝑡𝐴(𝑡) = ∫ 10𝑒 1

10𝑡 d𝑡

𝑒 1
10𝑡𝐴(𝑡) = 100𝑒 1

10𝑡 + 𝐶

⇒ 𝐴(𝑡) =
100𝑒 1

10𝑡

𝑒 1
10𝑡

+
𝐶

𝑒 1
10𝑡

)

hence

𝐴(𝑡) = 100 + 𝐶𝑒− 1
10𝑡 

∀𝑡 ∈ (0, ∞)

This is a general solution. To find 𝐶 , we need to solve an initial value problem. From the problem
statement,

d𝐴
d𝑡

= 10 −
1
10

𝐴(𝑡) subject to 𝐴(0) = 20
𝑔
𝐿

20 = 𝐴(0) = 100 + 𝐶𝑒− 1
10(0)

20 = 100 + 𝐶

𝐶 = −80

𝐴(𝑡) = 100 − 80𝑒− 1
10𝑡∀𝑡 ∈ (0, ∞)
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b) How long does it take for the amount of salt to reach 60 grams?

Solution: We want time 𝑡 > 0 such that 60 = 𝐴(𝑡) = 199 − 80𝑒− 1
10𝑡

⇒ 60 = 100 − 80𝑒− 1
10𝑡 ⇒

60 − 100
−80

= 𝑒− 1
10𝑡 ⇒ ln(

−40
−80

) = ln(𝑒− 1
10𝑡) ⇒ ln(−

1
2
) = −

1
10

𝑡

⇒ 𝑡 = −10 ln(
1
2
)

c) Find the approximate amount of salt after 100 years.

This can be modeled by taking the limit as 𝑡 → ∞:

lim
𝑡→∞

𝐴(𝑡) = 100𝑔

§ 4.1 homogenous equations in the textbook

Recall that

𝑎𝑛(𝑥)
d𝑛𝑦
d𝑥𝑛 + 𝑎𝑛−1(𝑥)

d𝑛−1𝑦
d𝑥𝑛−1 + ⋯ + 𝑎0(𝑥)𝑦 = 𝑔(𝑥)

is an 𝑛th-order ODE that is linear.

The associated homogenous equation is the same thing, except 𝑔(𝑥) = 0.

We will see that a general solution to the above equation is

general solution of
homogenous equation

+
particular solution of

nonhomogenous equation

Example: 2𝑦″ + 3𝑦′ − 5𝑦 = 𝑒𝑥, which is a non-homogenous second-order ODE.

The associated homogenous equation is 2𝑦″ + 3𝑦′ − 5𝑦 = 0 which is a homogenous linear second-
order ODE.

Superposition principle
Theorem: If 𝑦1, …, 𝑦𝑘 are solutions to a homogenous equation, then

𝑦 = 𝐶1𝑦1 + … + 𝐶𝑘𝑦𝑘

𝐶𝑖 ∈ ℝ

is a solution. So

span(𝑦1, …, 𝑦𝑘) = 𝑊

where 𝑊  is a subspace of 𝐹 = all functions ℝ → ℝ.

Example: 𝑦1 = 𝑥2, 𝑦2 = 𝑥2 ln(𝑥), 𝑥 ∈ (0, ∞) are solutions to 𝑥3𝑦‴ − 2𝑥𝑦′ + 4𝑦 = 0, which is a ho-
mogenous third-order linear ODE.

We can verify that 𝑦1 = 𝑥2 and 𝑦2 = 𝑥2 ln(𝑥) are solutions of this ODE.

By the superposition principle,

𝑦 = 𝑐1𝑥2 + 𝑐2𝑥2 ln(𝑥), 𝑥 ∈ (0, ∞), 𝑐1, 𝑐2 ∈ ℝ

is also a solution to this ODE.

(end of class)
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Lecture 34: Wronskians and fundamental sets of solutions
Linear independence
Definition: 𝑓1, 𝑓2, …, 𝑓𝑛 are linearly independent on an interval 𝐼  if:

𝑐1𝑓1(𝑥) + … + 𝑐𝑛𝑓𝑛(𝑥) = 0∀𝑥 ∈ 𝐼
where 𝑐1 = 𝑐2 = … = 𝑐𝑛 = 0

Example: Are 𝑓1(𝑥) = sin(2𝑥), 𝑓2(𝑥) = sin(𝑥) cos(𝑥), 𝐼 = (−∞, ∞) linearly independent?

Solution: use the zero function

𝑐1𝑓1(𝑥) + 𝑐2𝑓2(𝑥) = 0∀𝑥 ∈ (−∞, ∞)

𝑐1 sin(2𝑥) + 𝑐2 sin(𝑥) cos(𝑥) = 0∀𝑥 ∈ (−∞, ∞)

Recall that sin(2𝑥) = 2 sin(𝑥) cos(𝑥)∀𝑥 ∈ (−∞, ∞) Hence,

1 sin(2𝑥) + −2 sin(𝑥) cos(𝑥) = 0

𝑐1, 𝑐2 ≠ 0 ⇒ the functions are not linearly independent.

Example: Are 𝑓1(𝑥) = |𝑥|, 𝑓2(𝑥) = 𝑥, 𝐼 = (−∞, ∞) linearly independent?

Solution: We consider

𝑐1 |𝑥| + 𝑐2𝑥 = 0∀𝑥 ∈ (−∞, ∞)

If this is true for all 𝑥 ∈ (−∞, ∞) in particular, the equation holds for 𝑥 = 1 and 𝑥 = −1.

{
𝑥 = 1 : 𝑐1 + 𝑐2 = 0
𝑥 = −1 : 𝑐1 − 𝑐2 = 0 ⇒ [1

1
1

−1][
𝑐1
𝑐2

] = [0
0]

Since det([1
1

1
−1]) = −2, the system has a trivial solution of 𝑐1 = 𝑐2 = 0, so the functions are linearly

independent.

Note: The interval matters. Consider

𝑓1(𝑥) = |𝑥|, 𝑓2(𝑥) = 𝑥∀𝑥 ∈ (1, ∞)

Are 𝑓1(𝑥) and 𝑓2(𝑥) linearly independent? Nope!

𝑓1(𝑥) = |𝑥| = 𝑥 = 𝑓2(𝑥)

so

1𝑓1(𝑥) + (−1)𝑓2(𝑥) = 0∀𝑥 ∈ (1, ∞)

so they’re not linearly independent on this interval.
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Wronskians
Suppose 𝑓1, …, 𝑓𝑛 are functions that have at least 𝑛 − 1 derivatives.

Definition: the Wronskian of 𝑓1, …, 𝑓𝑛 is

𝑊(𝑓1, …, 𝑓𝑛) = det

⎝
⎜⎜
⎜⎜
⎜⎜
⎜⎜
⎜⎜
⎛

⎣
⎢
⎢
⎢
⎢
⎢
⎡ 𝑓1

𝑓 ′
1

𝑓″
1
⋮

𝑓 (𝑛−1)
1

𝑓2

𝑓″
2

𝑓″
2
⋮

𝑓 (𝑛−1)
2

⋯
⋯
⋯
 
⋯

𝑓𝑛

𝑓 ′
𝑛

𝑓″
𝑛
⋮

𝑓 (𝑛−1)
𝑛 ⎦

⎥
⎥
⎥
⎥
⎥
⎤

⎠
⎟⎟
⎟⎟
⎟⎟
⎟⎟
⎟⎟
⎞

This is a function of 𝑥.

Theorem: Assume 𝑦1, …, 𝑦𝑛 are 𝑛 solutions to

𝑎𝑛(𝑥)
d𝑦𝑛

d𝑥𝑛 + 𝑎𝑛−1
d𝑦𝑛−1

d𝑥𝑛−1 + ⋯ + 𝑎1(𝑥)
d𝑦
d𝑥

+ 𝑎0(𝑥)𝑦 = 0

on an interval 𝐼 . Then 𝑦1, …, 𝑦𝑛 are linearly independent if and only if 𝑊(𝑦1, …, 𝑦𝑛) ≠ 0∀𝑥 ∈ 𝐼 .

(The above equation is an 𝑛th-order homogenous linear equation.)

Moreover,
• If 𝑊(𝑦1, …, 𝑦𝑛) = 0 for some 𝑥0 ∈ 𝐼 , 𝑊(𝑦1, …, 𝑦𝑛) = 0∀𝑥 ∈ 𝐼 .
• If 𝑊(𝑦1, …, 𝑦𝑛) ≠ 0 for some 𝑥0 ∈ 𝐼 , 𝑊(𝑦1, …, 𝑦𝑛) ≠ 0∀𝑥 ∈ 𝐼 .

(In other terms, if the Wronskian is either zero or nonzero for some number in the interval, it’s that
everywhere else in the interval.)

If 𝑊(𝑦1, …, 𝑦2) ≠ 0 ⇒ {𝑦1, …, 𝑦𝑛} is called a fundamental set of solution to the 𝑛th-order homoge-
nous linear equation. So any solution to the ODE is given as

𝑦 = 𝑐1𝑦1 + 𝑐2𝑦2 + ⋯ + 𝑐𝑛𝑦𝑛

(this is a general solution).

Example: Given 𝑥2𝑦″ + 7𝑥𝑦′ + 13𝑦 = 0, 𝑦1 = cos(2 ln(𝑥))
𝑥3 , 𝑦1 = sin(2 ln(𝑥))

𝑥3 , 𝐼 = (0, ∞), is {𝑦1, 𝑦2} a
fundamental set of solutions?

Solution: We compute the Wronskian…

𝑊(𝑦1, 𝑦2) = det([
𝑦1
𝑦′

1

𝑦2
𝑦′

2
])

det
⎝
⎜⎜
⎛

⎣
⎢
⎡

cos(2 ln(𝑥))
𝑥3

−2𝑥2 sin(2 ln(𝑥))−3𝑥2 cos(2 ln(𝑥))
𝑥6

sin(2 ln(𝑥))
𝑥3

2𝑥2 cos(2 ln(𝑥))−3𝑥2 sin(2 ln(𝑥))
𝑥6 ⎦

⎥
⎤

⎠
⎟⎟
⎞

(end of class)
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Lecture 35: non-homogenous equations and reduction of order
Non-homogenous equations
Once again, recall that

𝑎𝑛(𝑥)
d𝑛𝑦
d𝑥𝑛 + 𝑎𝑛−1(𝑥)

d𝑛−1𝑦
d𝑥𝑛−1 + ⋯ + 𝑎0(𝑥)𝑦 = 𝑔(𝑥)

is an 𝑛th-order ODE that is linear. The general solution is

𝑦 = (
general solution to the

associated homogenous equation
) + (

particular solution
 to g(x) above

)

= 𝑐1𝑦1 + 𝑐2𝑦2 + ⋯ + 𝑐𝑛𝑦𝑛 + 𝑦𝑝, 𝑐𝑖 ∈ ℝ

Example: Consider 𝑦‴ − 6𝑦″ + 11𝑦′ − 6𝑦 = 3𝑥. Do the following numbered items:

1. First, verify that 𝑦1 = 𝑒𝑥, 𝑦2 = 𝑒2𝑥, 𝑦3 = 𝑒3𝑥, 𝑥 ∈ (−∞, ∞) is a fundamental set of solutions.

Solution: We are given a third-order linear ODE and three solutions (y_1, y_2, y_3). That means we
only need to verify that these solutions are linearly independent.

The Wronskian is

𝑊(𝑦1, 𝑦2, 𝑦3) = det
⎝
⎜⎜
⎛

⎣
⎢
⎡𝑒𝑥

𝑒𝑥

𝑒𝑥

𝑒2𝑥

2𝑒2𝑥

4𝑒2𝑥

𝑒3𝑥

3𝑒3𝑥

9𝑒3𝑥⎦
⎥
⎤

⎠
⎟⎟
⎞

We can pick one number as a sample point in the interval (so some number 𝑛 ∈ (−∞, ∞)), and if the
Wronskian is nonzero for that number, it’s nonzero everywhere. Here, it’s convenient to pick 0.

𝑊|𝑥=0 = det
⎝
⎜⎛

⎣
⎢⎡

1
1
1

1
2
4

1
3
9⎦
⎥⎤

⎠
⎟⎞ = 2 ≠ 0✓

Hence 𝑦1(𝑥) = 𝑒𝑥, 𝑦2(𝑥) = 𝑒2𝑥, 𝑦3(𝑥) = 𝑒3𝑥 is a fundamental set of solutions to 𝑦‴ − 6𝑦″ + 11𝑦′ −
6𝑦 = 0.

2. Verify that 𝑦𝑝 = −11
12 − 1

2𝑥, 𝑥 ∈ (−∞, ∞) is a particular solution.

Calculating the derivatrives, 𝑦′
𝑝 = −1

2 , 𝑦″
𝑝 = 0, 𝑦‴

𝑝 = 0. Then substituting that into the given equation,

0 − 6(0) + 11(−
1
2
) − 6(−

11
12

−
1
2
𝑥) = 3𝑥

Yep, this is a solution to 𝑦‴ − 6𝑦″ + 11𝑦′ − 6𝑦 = 3𝑥 on the interval (−∞, ∞)! We get the same right
hand side when we plug it into the equation.

3. Write the general solution.

Just do the general solution to the associated homogenous equation + the particular solution:

𝑦 = 𝑐1𝑒𝑥 + 𝑐2𝑒2𝑥 + 𝑐3𝑒3𝑥 + (−
11
12

−
1
2
𝑥) on (−∞, ∞)
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Consider 𝑦″ − 3𝑦′ + 4𝑦 = −16𝑥2 + 24𝑥 − 8 + 2𝑒2𝑥 + 2𝑥𝑒𝑥 − 𝑒𝑥 on (−∞, ∞) and, by splitting it up
into groups, the following equations:

⎩
{
⎨
{
⎧(1) 𝑦″ − 3𝑦′ + 4𝑦 = −16𝑥2 + 24𝑥 − 8

(2) 𝑦″ − 3𝑦′ + 4𝑦 = 2𝑒2𝑥

(3) 𝑦″ − 3𝑦′ + 4𝑦 = 2𝑥𝑒𝑥 − 𝑒𝑥

The superposition principle establishes that if 𝑦𝑝1
 is a solution to (1), 𝑦𝑝2

 is a solution to (2), and 𝑦𝑝3
 is

a solution to (3), then 𝑦𝑝1
+ 𝑦𝑝2

+ 𝑦𝑝3
 is also a particular solution to the initial (big) equation.

equation particular solution

(1) 𝑦𝑝1
(𝑥) = −4𝑥2

(2) 𝑦𝑝2
(𝑥) = 𝑒2𝑥

(3) 𝑦𝑝3
(𝑥) = 𝑥𝑒𝑥

A particular solution to the given equation is then

𝑦𝑝 = −4𝑥2 + 𝑒2𝑥 + 𝑥𝑒𝑥 on (−∞, ∞)

(We’ll learn how to actually find the particular solutions next lecture.)

Reduction of order (§ 4.2)
Consider 𝑎2(𝑥)𝑦″ + 𝑎1(𝑥)𝑦′ + 𝑎0(𝑥)𝑦 = 0 and assume we know one solution 𝑦1(𝑥). How do we find
a second solution 𝑦2(𝑥) such that 𝑦2(𝑥) is linearly independent from 𝑦1(𝑥)? By the method of reduc-
tion of order.

(We’re not going over why this works — he recommends just memorizing the formula, since it’s a
lengthy derivation.)

Reduction of order steps:
Given 𝑎2(𝑥)𝑦″ + 𝑎1(𝑥)𝑦′ + 𝑎0(𝑥)𝑦 = 0,
1. Convert the given equation to the standard form

𝑦″ +
𝑎1(𝑥)
𝑎2(𝑥)

𝑦′ +
𝑎0(𝑥)
𝑎2(𝑥)

𝑦 = 0

⇣ 𝑎2(𝑥) ≠ 0 ⇣
𝑦″ + 𝑃(𝑥)𝑦′ + 𝑄(𝑥)𝑦 = 0

2. Compute

𝑦2(𝑥) = 𝑦1(𝑥) ∫
𝑒− ∫ 𝑃(𝑥) d𝑥

𝑦2
1(𝑥)

d𝑥
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Example: Given 𝑥2𝑦″ − 3𝑥𝑦′ + 4𝑦 = 0, and assume 𝑦1(𝑥) = 𝑥2 is a solution on (−∞, ∞). Find a
general solution.

Solution: We apply reduction of order:

First, converting to standard form:

𝑦″ −
3𝑥
𝑥2 𝑦′ +

4
𝑥2 = 0

Notice that by dividing, 𝑥2 ≠ 0 ⇔ 𝑥 ∈ (−∞, 0) ∨ 𝑥 ∈ (0, ∞)

Then the second solution is

𝑦2(𝑥) = 𝑥2 ∫
𝑒− ∫ −3

𝑥 d𝑥

(𝑥2)2 d𝑥

= 𝑥2 ∫
𝑒∫ 3

𝑥 d𝑥

𝑥4 d𝑥

= 𝑥2 ∫
𝑒3 ln|𝑥|

𝑥4 d𝑥

We can remove the absolute value by picking an interval. Here, let’s pick 𝑥 ∈ (0, ∞).

=
𝑥∈(0,∞)

𝑥2 ∫
𝑒3 ln 𝑥

𝑥4 d𝑥

= 𝑥2 ∫
𝑒ln 𝑥3

𝑥4 d𝑥

= 𝑥2 ∫
𝑥3

𝑥4 d𝑥

= 𝑥2 ∫
1
𝑥

d𝑥

= 𝑥2 ln|𝑥| + 𝐶

Taking 𝐶 = 0 and again given that we’ve chosen 𝑥 ∈ (0, ∞), our solution is

𝑦2 = 𝑥2 ln 𝑥

Then our general solution is 𝑦1 + 𝑦2

(end of class)
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Lecture 36: homogenous linear ODEs with constant coefficients
and undetermined coefficients
Homogenous linear ODEs with constant coefficients
We consider

𝑎𝑛𝑦(𝑛) + 𝑎𝑛−1𝑦(𝑛−1) + ⋯ + 𝑎1𝑦′ + 𝑎0𝑦 = 0

where 𝑎𝑖 is a real number (constant).

(For the following, we assume its solutions are of the form 𝑦 = 𝑒𝑚𝑥.)

Definition: the auxiliary equation for the above equation is

𝑎𝑛 + 𝑚𝑛 + 𝑎𝑛−1 + 𝑚𝑛−1 + ⋯ + 𝑎1𝑚 + 𝑎0 = 0

This is a polynomial in the variable 𝑚 with degree 𝑛. Therefore the solutions to this polynomial yield
𝑛 linearly independent solutions to the above differential equation — i.e., they form a fundamental set
of solutions.

If 𝑛 = 2, then the differential equation becomes

𝑎𝑦″ + 𝑏𝑦′ + 𝑐𝑦 = 0

and then the auxillary equation is

𝑎𝑚2 + 𝑏𝑚 + 𝑐 = 0

By the quadratic formula, the roots of this auxillary equation are 𝑚1,2 = −𝑏±
√

𝑏2−4𝑎𝑐
2𝑎 , and Δ = 𝑏2 −

4𝑎𝑐 is the discriminant.
1. If Δ = 𝑏2 − 4𝑎𝑐 > 0, then 𝑚1 ≠ 𝑚2 and 𝑚1, 𝑚2 ∈ ℝ.

• In this case, 𝑦1 = 𝑒𝑚1𝑥, 𝑦2 = 𝑒𝑚2𝑥 is a fundamental set of solutions.
2. If Δ = 𝑏2 − 4𝑎𝑐 = 0, 𝑚1 = 𝑚2 = − 𝑏

2𝑎 ∈ ℝ. This gives us one solution repeated twice. So becuase
𝑦1 = 𝑦2 and 𝑚1 = 𝑚2, we have 𝑦1 = 𝑒𝑚1𝑥. To find a second solution, we use reduction of order.
• This gives us 𝑦1 = 𝑒𝑚1𝑥, 𝑦2 = 𝑥𝑒𝑚1𝑥 as the fundamental set of solutions

3. If Δ = 𝑏2 − 4𝑎𝑐 < 0, that means 𝑚1, 𝑚2 are conjugate complex numbers of the form 𝑚1 = 𝛼 +
𝛽𝑖, 𝑚2 = 𝛼 − 𝛽𝑖.
• A fundamental set of solutions is then 𝑦1 = 𝑒(𝛼+𝛽𝑖)𝑥, 𝑦2 = 𝑒(𝛼−𝛽𝑖)𝑥

• Equivalently, 𝑦1 = 𝑒𝛼𝑥 cos(𝛽𝑥), 𝑦2 = 𝑒𝛼𝑥 sin(𝛽𝑥), which comes from Euler’s formula 𝑒𝑖𝜃 =
sin(𝜃) + cos(𝜃)

Lecture 36: homogenous linear ODEs with constant coefficients and undeter-
mined coefficients
compiled on Wednesday, October 2, 2024

101/120
back to contents ↑



Example: Solve 𝑦″ − 𝑦′ − 6𝑦 = 0.

(This is an example for (1))

Solution: The auxilllary equation is

𝑚2 − 𝑚 − 6 = 0

(𝑚 + 2)(𝑚 − 3) = 0

so its roots are

𝑚1 = −2, 𝑚2 = 3

Hence, the fundamental set of solutions is

𝑦1 = 𝑒−2𝑥, 𝑦2 = 𝑒3𝑥

and the general solution is

𝑦 = 𝐶1𝑒−2𝑥 + 𝐶2𝑒3𝑥

(Note: the textbook sometimes calls the general solution the “complementary solution” and use 𝑦𝑐 =
….)

Example: Solve 𝑦″ + 8𝑦′ + 16𝑦 = 0

(This is an example for (2))

Solution: The auxiliary equation is 𝑚2 + 8𝑚 + 16 = 0, which gives us (𝑚 + 4)2 = 0 ⇒ 𝑚 = −4.

Thus a fundamental set of solutions is

𝑦1 = 𝑒−4𝑥, 𝑦2 = 𝑥𝑒−4𝑥

and the general/complementary solution is

𝑦𝑐 = 𝐶1𝑒−4𝑥 + 𝐶2𝑥𝑒−4𝑥

Example: Solve 𝑦″ + 4𝑦′ + 6𝑦 = 0

(This is an example for case (3))

Solution: Our auxiliary equation is 𝑚2 + 4𝑚 + 6 = 0 ⇒ Δ = 42 − 4(1)(6) = −8 so then

𝑚1 =
−4 +

√
Δ

2(1)
=

−4 +
√

−8
2

=
−4 + √(−1)(4)(2)

2
=

−4 + 2𝑖
√

2
2

= −2⏟
𝛼

+ 2
√

𝑖⏟
𝛽

This makes the following fundamental set of solutions:

𝑦1 = 𝑒−2𝑥 cos(
√

2𝑥), 𝑦2 = 𝑒−2𝑥 sin(
√

2𝑥)

and the general/complementary solution

𝑦𝐶 = 𝐶1𝑒−2𝑥 cos(
√

2𝑥) + 𝐶2𝑒−2𝑥 sin(
√

2𝑥)
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Example: Solve 𝑦(5) − 3𝑦(4) + 4𝑦(3) − 4𝑦″ + 3𝑦′ − 𝑦 = 0

(This is a combination of multiple cases)

Solution: The auxillary equation is

𝑚5 − 3𝑚4 + 4𝑚3 − 4𝑚2 + 3𝑚 − 1 = 0

(Note: to solve cubics, review synthetic division and the 𝑝𝑞  thing for guessing the first root.)

Factoring that, we have

(𝑚2 + 1)(𝑚 − 1)3 = 0

which gives us

𝑚 = ±𝑖, 1

(the root 1 has multiplicity 3, i.e. it’s repeated three times)

That means that we have the following as a fundamental set of solutions:

𝑦1 = 𝑒0𝑥 cos(1𝑥), 𝑦2 = 𝑒0𝑥 sin(1𝑥), 𝑦3 = 𝑒1𝑥, 𝑦4 = 𝑥𝑒1𝑥, 𝑦5 = 𝑥2𝑒1𝑥

which in turn means the general/complementary solution is

𝑦𝑐 = 𝐶1 cos(𝑥) + 𝐶2 sin(𝑥) + 𝐶3𝑒𝑥 + 𝐶4𝑥𝑒𝑥 + 𝐶5𝑥2𝑒𝑥

Undetermining coefficients (§ 4.4)
Consider again

𝑎𝑛𝑦(𝑛) + 𝑎𝑛−1𝑦(𝑛−1) + ⋯ + 𝑎1𝑦′ + 𝑎0𝑦 = 0

But now we’re going to focus on finding a particular solution 𝑦𝑝 for this equation.

The idea behind undetermined coefficients is to make an educated guess about 𝑦𝑝. This method only
works if 𝑔(𝑥) is:
• 𝑔(𝑥) constant
• 𝑔(𝑥) polynomial
• 𝑔(𝑥) is sin(𝑥), cos(𝑥) (but not any of the other trig functions!)
• 𝑔(𝑥) exponential function
• 𝑔(𝑥) finite sums or products of the above

Quick example:
• 𝑔(𝑥) = 𝑥2 sin(𝑥) + 𝑒2𝑥 ✓ yep
• 𝑔(𝑥) = tan(𝑥) nope
• 𝑔(𝑥) = 1

𝑥  nope

We will also consider if the guess 𝑦𝑝 contains solutions that appear in 𝑦𝑐.
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Undetermined coefficients
Example: 𝑦″ − 2𝑦′ − 3𝑦⏟⏟⏟⏟⏟

linear with
constant coefficients

= 4𝑥 + 5 + 6𝑥𝑒2𝑥⏟⏟⏟⏟⏟⏟⏟
𝑔(𝑥) must be of
a specific type

Solution:

1. Find the complementary solution to 𝑦″ − 2𝑦′ − 3𝑦 = 0, which is then

𝑚2 − 2𝑚 − 3 = 0 ⇒ (𝑚 − 3)(𝑚 + 1) = 0 ⇒ 𝑚 = 3, 𝑚 = −1

so

𝑦𝑐 = 𝐶1𝑒3𝑥 + 𝐶2𝑒−𝑥

𝐶1, 𝐶2 ∈ ℝ, 𝑥 ∈ (−∞, ∞)

2. Find a particular solution 𝑦𝑝. We use undetermined coefficients, but first, we split the right side by
“types of equations” and consider the equations

{
a) 𝑦″ − 2𝑦′ − 3𝑦 = 4𝑥 + 5 (polynomial of degree 1)
b) 𝑦″ − 2𝑦′ − 3𝑦′ = 6𝑥𝑒2𝑥 (polynomial of degree 1) ∗ (exponential 𝑒2𝑥)

Note: Table 4.4.1 in the textbook is probably helpful, but you can’t use it on the exam, so there’s that

Our proposed solution for (a) is

𝑦𝑝1
= 𝐴𝑥 + 𝐵

Computing the derivatives of this,

𝑦′
𝑝1

= 𝐴, 𝑦″
𝑝1

= 0

Substituting,

0 − 2(𝐴) − 3(𝐴𝑥 + 𝐵) = 4𝑥 + 5

And then comparing coefficients,

{−3𝐴 = 4
−2𝐴 − 3𝐵 = 5

⇒
⎩{
⎨
{⎧𝐴 = −4

3

𝐵 = 23
9

so we have

𝑦𝑝1
−

4
3
𝑥 +

23
9

𝑥 ∈ (−∞, ∞)

Next, our proposed solution for (b) is

𝑦𝑝2
= (𝐶𝑥 + 𝐷)𝑒2𝑥 = 𝐶𝑥𝑒2𝑥 + 𝐷𝑒2𝑥

And again computing derivatives

𝑦′
𝑝2

= 𝐶𝑒2𝑥 + 2𝐶𝑒2𝑥 + 2𝐷𝑒2𝑥 = 2𝐶𝑥𝑒2𝑥 + (𝐶 + 2𝐷)𝑒2𝑥

𝑦″
𝑝2

= 2𝐶𝑒2𝑥 + 4𝐶𝑥𝑒2𝑥 + 2(𝐶 + 2𝐷)𝑒2𝑥 = 4𝐶𝑥𝑒2𝑥 + 4(𝑋 + 𝐷)𝑒2𝑥
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Substituting in (b):

(4𝐶𝑥𝑒2𝑥 + 4(𝑋 + 𝐷)𝑒2𝑥) − 2(2𝐶𝑥𝑒2𝑥 + (𝐶 + 2𝐷)𝑒2𝑥) − 3(𝐶𝑥𝑒2𝑥 + 𝐷𝑒2𝑥) = 6𝑥𝑒2𝑥

−3𝐶𝑥𝑒2𝑥 + (2𝐶 − 3𝐷)𝑒2𝑥 = 6𝑥𝑒2𝑥

Comparing coefficients,

{−3𝐶 = 6
2𝐶 − 3𝐷 = 0

⇒ {
𝐶 = −2
𝐷 = −4

3

So the particular solution for (b) is

𝑦𝑝2
= −2𝑥𝑒2𝑥 −

4
3
𝑒2𝑥

𝑥 ∈ (−∞, ∞)

Time to put it all together! All three solutions (the complementary one and two particular ones) have
a domain of 𝑥 ∈ (−∞, ∞). We just have to add them together — hence, the solution is

𝑦 = 𝑦𝑐 + 𝑦𝑝1
+ 𝑦𝑝2

𝑥 ∈ (−∞, ∞)
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Example:

𝑦″ − 6𝑦′ + 9𝑦 = 6𝑥2 + 2⏟
quadratic
polynomial

+ −12𝑒3𝑥⏟
constant 𝑥 ∗
exponential 𝑒

Solution: First, we find 𝑦𝑐:

𝑦″ − 6𝑦′ + 9𝑦 = 0

𝑚2 − 6𝑚 + 9𝑦 = 0 ⇒ (𝑚 − 3)2 = 0 ⇒ 𝑚 = 3

The complementary solution is

𝑦𝑐 = 𝐶1𝑒3𝑥 + 𝐶2𝑥𝑒3𝑥

𝑥 ∈ (−∞, ∞)

Now for the particular solutions: first we analyze

𝑦″ − 6𝑦′ + 9𝑦 = 6𝑥2 + 2

and we propose

𝑦𝑝1
= 𝐴𝑥2 + 𝐵𝑥 + 𝐶

and after doing computations

⎩{
{⎨
{{
⎧𝐴 = 2

3

𝐵 = 8
9

𝐶 = 2
3

so

𝑦𝑝1
=

2
3
𝑥2 +

8
9
𝑥 +

2
3

𝑥 ∈ (−∞, ∞)

and then for the second particular solution

𝑦″ − 6𝑦′ + 9𝑦 = −12𝑒3𝑥

we propose

𝑦𝑝1
= 𝐾𝑒3𝑥 ⇒⇒⇒⇒⇒⇒⇒⇒⇒⇒⇒⇒⇒⇒⇒⇒⇒⇒⇒⇒⇒

multiply by 𝑥
𝑦𝑝2

= 𝐾𝑥𝑒3𝑥 ⇒⇒⇒⇒⇒⇒⇒⇒⇒⇒⇒⇒⇒⇒⇒⇒⇒⇒⇒⇒⇒
multiply by 𝑥

𝑦𝑝2
= 𝐾𝑥2𝑒3𝑥

Solving to find 𝐾 , we obtain 𝐾 = −6, so we have

𝑦𝑝2
= −6𝑥2𝑒3𝑥

𝑥 ∈ (−∞, ∞)

Substituting this in, we end up with

6𝑥𝑒2𝑥
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Variation of parameters
Notes on this method:
1. Method due to Lagrange
2. 𝑔(𝑥) has no restrictions (it can be any function)
3. The method applies to any linear ODE

• But we will only cover the technique for linear ODEs with constant coefficients

The method: Consider 𝑎2𝑦″ + 𝑎1𝑦′ + 𝑎0𝑦 = 𝑔(𝑥), 𝑎𝑖 ∈ ℝ.

1. Compute the complementary solution 𝑦𝑐 for the homogenous equation

𝑎2𝑦″ + 𝑎1𝑦′ + 𝑎0𝑦 = 0

You can solve this with the characteristic polynomial, and you end up with

𝑦𝑐 = 𝐶1𝑦1 + 𝐶2𝑦2

Take 𝑦1 and 𝑦2 for the next step.

2. Compute the Wronskian of 𝑦1, 𝑦2: 𝑊(𝑦1, 𝑦2) = det([
𝑦1

𝑦′
1

𝑦2

𝑦′
2
])

3. Assume the particular solution is of the form 𝑦𝑝 = 𝑢1𝑦1 + 𝑢2𝑦2 for some functions 𝑢1, 𝑢2 (which
are unknown).

(end of class)
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Last lecture: variation of paramerters and vibrations
Variation of parameters
Problem: we’re trying to solve a second-order differential equation with constant coefficients like

𝑎2𝑦″ + 𝑎1𝑦′ + 𝑎0𝑦 = 𝑔(𝑥)

1. Compute the complementary solution 𝑦𝑐 (just consider the homogenous part)
• of the form 𝑦𝑐 = 𝑐1𝑦1 + 𝑐2𝑦2

2. Assume that a particular solution is of the form 𝑦𝑝 = 𝑢1𝑦1 + 𝑢2𝑦2. Compute the functions 𝑢1, 𝑢2.
• To do so:

1. Compute 𝑊(𝑦1, 𝑦2) = det([
𝑦1

𝑦′
1

𝑦2

𝑦′
2
])

‣ Note: don’t pick sample points
‣ Compute 𝑊1 = det([

0

𝑓(𝑥)

𝑦2

𝑦′
2
]), 𝑊2 = det([

𝑦1

𝑦′
1

0

𝑓(𝑥)
])

‣ We transform the differential equation into standard form like this:

𝑓(𝑥) =
𝑔(𝑥)
𝑎2

= 𝑦″ +
𝑎1
𝑎2

𝑦′ +
𝑎0
𝑎2

𝑦

2. Set 𝑢′
1 = 𝑊1

𝑊 = −𝑦2𝑓(𝑥)
𝑊 , 𝑢′

2 = 𝑊2
𝑊 = 𝑦1𝑓(𝑥)

𝑊
3. Integrate with respect to 𝑥 to compute 𝑢1, 𝑢2
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Example: 𝑦″ − 4𝑦′ + 4𝑦 = (𝑥 + 1)𝑒2𝑥

Solution:

1. First, compute 𝑦𝑐:

𝑚2 − 4𝑚 + 4 = 0 ⇒ 𝑚 = 2 (multiplicity 2)

𝑦𝑐 = 𝐶1𝑒2𝑥⏟
𝑦1

+ 𝐶2𝑥𝑒2𝑥⏟
𝑦2

2. The particular solution has the form 𝑦𝑝 = 𝑢1𝑦1 + 𝑢2𝑦2.

To find 𝑢1, 𝑢2:

𝑊(𝑦1, 𝑦2) = det([ 𝑒2𝑥

2𝑒2𝑥
𝑥𝑒2𝑥

𝑒2𝑥 + 2𝑥𝑒2𝑥]) = 𝑒2𝑥(𝑒2𝑥 + 2𝑥𝑒2𝑥) − 2𝑒2𝑥𝑥𝑒2𝑥 = 𝑒4𝑥

The given ODE is already in standard form, so 𝑓(𝑥) = (𝑥 + 1)𝑒2𝑥

𝑢′
1 = −

𝑦2𝑓(𝑥)
𝑊

= −
𝑥𝑒2𝑥(𝑥 + 1)𝑒2𝑥

𝑒4𝑥 = −𝑥(𝑥 + 1) = −𝑥2 − 𝑥

Integrating 𝑢′
1:

𝑢1 = ∫(−𝑥2 − 𝑥) d𝑥 = −
1
3
𝑥3 −

1
2
𝑥2

Note: we ignore the usual +𝐶 coefficient of integration here

Then for 𝑢′
2:

𝑢′
2 =

𝑦1𝑓(𝑥)
𝑊

=
𝑒2𝑥(𝑥 + 1)𝑒2𝑥

𝑒4𝑥 = 𝑥 + 1

and then integrating to get 𝑢2:

∫ 𝑥 + 1 d𝑥 =
1
2
𝑥2 + 𝑥

Then a particular solution is

𝑦𝑝 = 𝑢1𝑦1 + 𝑢2𝑦2 = (−
1
3
𝑥3 −

1
2
𝑥2)𝑒2𝑥 + (

1
2
𝑥2 + 𝑥)𝑥𝑒2𝑥

Hence, the general solution is

𝑦 = 𝑦𝑐 + 𝑦𝑝

𝑦 = 𝐶1𝑒2𝑥 + 𝐶2𝑥𝑒2𝑥 + (−
1
3
𝑥3 −

1
2
𝑥2)𝑒2𝑥 + (

1
2
𝑥2 + 𝑥)𝑥𝑒2𝑥
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Example: 4𝑦″ + 36𝑦 = csc(3𝑥)

We can’t solve this using undetermined coefficients because csc(3𝑥) = 1
sin(3𝑥) , which is a quotient of

two functions, not a product or a sum. Hence, we approach the problem using variation of parameters.

1. Compute 𝑦𝑐:

4𝑚2 + 36 = 0 ⇔ 𝑚2 + 9 = 0 ⇔ 𝑚 = ±3𝑖

so

𝑦𝑐 = 𝐶1𝑒0𝑥 cos(3𝑥) + 𝐶2𝑒0𝑥 sin(3𝑥)

𝑦𝑐 = 𝐶1 cos(3𝑥)⏟
𝑦1

+ 𝐶2 sin(3𝑥)⏟
𝑦2

2. Compute 𝑦𝑝:

𝑊(𝑦1, 𝑦2) = det([
cos(3𝑥)

−3 sin(3𝑥)
sin(3𝑥)

3 cos(3𝑥)
]) = 3 cos2(3𝑥) + 3 sin2(3𝑥) = 3(cos2(3𝑥) + sin2(3𝑥)) = 3

Putting the differential equation in standard form:

𝑦″ + 9𝑦 =
csc(3𝑥)

4⏟
𝑓(𝑥)

Now,

𝑢′
1 = −

𝑦2𝑓(𝑥)
𝑊

= −
sin(3𝑥) csc(3𝑥)

4
3

= −
sin(3𝑥) 1

sin(3𝑥)

12
= −

1
12

𝑢1 = ∫ −
1
12

d𝑥 = −
1
12

𝑥

𝑢′
2 =

𝑦1𝑓(𝑥)
𝑊

=
cos(3𝑥) csc(3𝑥)

4
3

=
1
12

cos(3𝑥)
sin(3𝑥)

𝑢2 = ∫
1
12

cos(3𝑥)
sin(3𝑥)

d𝑥

Using 𝑢-substitution to solve:

𝑢 = sin(3𝑥), d𝑢 = cos(3𝑥)3 d𝑥,
d𝑢
3

= cos(3𝑥) d𝑥

𝑢2 =
1
12

1
3

∫
1
𝑢

d𝑢 =
1
36

ln|𝑢| =
1
36

ln| sin(3𝑥)|

Add everything together to get a general solution.
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Vibrations (§ 5.1)
Picture a spring with a mass attached to the bottom. The string’s natural length is 𝑙, the length added
by hanging the mass is 𝑠, and the position of the mass relative to 𝑠 + 𝑙 is 𝑥(𝑡). (Basically 𝑥(𝑡) is how
far we pull the string down, and then how much it oscillates.)

Modeling the vibration of the spring yields the second order linear ODE

𝑚
d2𝑥
d𝑡2

= −𝑘𝑥

where 𝑚 is the mass and 𝑘 is the spring constant, which can be determined by Hooke’s law 𝐹 = 𝑘𝑠

𝑚
d2𝑥
d𝑡2

+ 𝑘𝑥 = 0

We can write

d2𝑥
d𝑡2

+ (√ 𝑘
𝑚

)
2

𝑥 = 0
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Topics to focus on

Differential equations things
1. Autonomous equations

• Similar to 3rd exam question
2. 1st order linear ODEs

• Make sure to put the equation in standard form, then do the integrating factor
3. Exact equations

• Know about the criterion for exactness (partials of M and N I think?)
4. Making non-exact equations into exact equations

• Again, the key thing to do is using an integrating factor
• Also make sure to again check for exactness

5. Homogeneous equations with constant coefficients
• Get rid of the coefficient of 𝑦″ by dividing everything by it
• If the discriminant 

√
𝑏2 − 4𝑎𝑐 is negative, you know you can’t factor it and the solutions are

negative
6. Undetermined coefficients
7. Reduction of order

• Pair types of expressions and solve
• Only applies to 2nd-order linear ODEs in standard form
• You need a given solution 𝑦1, and then you can find a second solution 𝑦2

8. Variation of parameters
• Solve the homogeneous part first, then find a particular solution
• A question might give you the homogeneous solutions and ask for a particular one

9. Solve a differential equation (using any of the above strategies) + initial value problems + find the
interval of solution

Linear algebra things
10. Eigenvalues & eigenvectors

• e.g. what is the corresponding eigenvector
11. Spaces associated with a matrix col(𝐴), row(𝐴), null(𝐴)
12. Orthogonal complements for subspaces and the above spaces

• e.g. what is the orthogonal complement of the column/row/null space of A?
• what is the dimension of the column space given a matrix’s dimensions and its rank?

13. Least squares solution
• Normal equation
• Unique solution iff A has linearly independent columns

14. Change of basis matrix
• 𝑃𝐶←𝐵
• Practice this with polynomials

15. Orthogonal projection
• Vector onto a subspace 𝑊 : proj𝑊 (𝑣) = proj𝑣1

(𝑣) + ⋯ + proj𝑣𝑘
(𝑣)

• 𝑊 = span(𝑣1, …, 𝑣𝑘) and {𝑣1, …, 𝑣𝑘} are orthogonal basis vectors of 𝑊
• But to use this, you have to make sure that the basis vectors are orthogonal! If not, use Gram-

Schmidt to orthogonalize them
16. Adjoint matrix and formula for inverse

• 𝐴−1 = 1
det(𝐴) adj(𝐴)

• Allows you to compute one entry of the inverse matrix without computing the whole matrix
17. Linear transformations (rank and nullity)
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18. Similarity and diagonalization
• Similarity: 𝐴~𝐵 ⇔ 𝑃𝐴𝑃−1 = 𝐵
• Diagonalization: 𝐴~𝐷 ⇔ 𝑃𝐴𝑃−1 = 𝐷 = [

𝜆1
 
 

 
⋱
 

 
 

𝜆𝑛

]

Note: no vibrations or mixing problems as of the time of writing
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Sample questions

DiffEQ sample questions

1) Consider the IVP {
d𝑦
d𝑥=𝑦2(4−𝑦2)

𝑦(1)=𝜋
2

. Compute lim𝑥→∞ 𝑦(𝑥).

I think the stability thing

2) Solve d𝑦
d𝑥 = 2𝑥 − 3𝑦, 𝑦(0) = 1

3 .

This is a first-order linear ODE. First, put it in standard form, then find an integrating factor to solve.
(Then apply the initial value to find the constant.)

3) Is (2𝑥𝑦2 − 3) d𝑥 + (2𝑥2𝑦 + 4) d𝑦 = 0 exact?
• If so, solve
• If not:

‣ Can it be made exact?
‣ What would an integrating factor be?

It’s in differential form, so apply the criterion of exactness. (Probably see class notes for this)

If not already exact, try to make 𝑃  or 𝑄 a function of just 𝑥 or just 𝑦 by dividing by the other

Then, you can get 𝜇 = 𝑒∫ 𝑃(𝑥) d𝑥 or 𝜇 = 𝑒∫ 𝑃(𝑦) d𝑦

4) Consider 𝑥2𝑦″ + 2𝑥𝑦′ − 6𝑦 = 0. A solution is 𝑦1 = 𝑥2. Find a second solution 𝑦2 so that {𝑦1, 𝑦2}
is a fundamental set of solutions.

Apply reduction of order. This is a second-order homogeneous linear ODE.

5) Consider 𝑥2𝑦″ + 𝑥𝑦′ + (𝑥2 − 1
4)𝑦 = 𝑥3

2 . A fundamental set of solutions to the homogenous part is

𝑦1 = 𝑥1
2 cos(𝑥), 𝑦2 = 𝑥1

2 sin(𝑥)

Find a particular solution 𝑦𝑝 to the given ODE.

Use variation of parameters (write it in standard form).

Linear sample questions
6) Let 𝐴 be a 121 × 257 matrix. If rank(𝐴) = 95, what are dim(row(𝐴)⟂) and dim(col(𝐴)⟂)?

We know that always

dim(row(𝐴)) = dim(col(𝐴)) = rank(𝐴) = 95

We can consider the 121 rows of 𝐴 as vectors. Each of these rows live in ℝ257. So the row space row(𝐴)
is inside ℝ257.

By the rank and nullity theorem, dim(row(𝐴)⟂) = 257 − 95 = 162

Now for the columns. The columns live in ℝ121, so dim(col(𝐴)⟂) = 121 − 95 = 26

7) Compute the orthogonal projection of 𝑉  onto 𝑊 , where

𝑉 =

⎣
⎢
⎢
⎡ 1

−1
1
0 ⎦

⎥
⎥
⎤

, 𝑊 = span

⎝
⎜⎜
⎜⎜
⎛

⎣
⎢
⎢
⎡1

0
0
0⎦
⎥
⎥
⎤

,

⎣
⎢
⎢
⎡1

0
0
1⎦
⎥
⎥
⎤

,

⎣
⎢
⎢
⎡1

0
1
0⎦
⎥
⎥
⎤

⎠
⎟⎟
⎟⎟
⎞

The basis vectors aren’t orthogonal, so apply Gram-Schmidt and then the formula for orthogonal pro-
jection
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8) Let 𝑇 : 𝑃3 → 𝑃3 be the linear transformation given by

𝑇 (𝑝(𝑥)) = 𝑥𝑝(0) + 𝑥2𝑝″(𝑥)
• Find the rank and nullity of T
• Find [𝑇 ]𝐸←𝐸 , where 𝐸 is the standard basis of 𝑃3.

(end of class)
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Joe’s section
Here marks Joe’s famous circle - the first of many great accomplishments and contributions he made

to this document

1

Here is an example of how this addition completely changed the game:

:)
:)
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